Library Functions

Standard Libraries

Any system call is not part of the C language definition
Such system calls are defined in libraries, identified with the suffix . a
Librariestypically contain many . o object files
To create your own library archivefile:
ar crv nylib.a *.o
Disregard “r anl i b” command in Wang, p311 (no longer needed)
Lookin/usr/lib and/usr/|ocal/libformostsystem libraries
Canlist al .ofilesinanarchiveuse“ar t /usr/lib/lib.a”
More useful to see all the function names:
[usr/ccs/bin/nm/usr/lib/libc.a | grep FUNC

S-120

Standard Libraries (cont)

By default, gcc links/ usr/ 11 b/ 11 bc. a toal executables

Typing “man 3 i ntro” will givealist of most of the standard library
functions

Any other libraries must be explicitly linked by referring to the absolute
pathname of the library, or preferably by using the “- | ” gcc switch:

gcc *.o /usr/lib/libma -0 mat hExanpl es
gcc *.0 -Im-o0o mat hExanpl es
These. a files are also sometimes referred to as static libraries

Often you will find for each system . a fileacorresponding . so file,
referred to as a shared object (not needed for this course)

Advantage of shared objects: smaller executable files (library functions
loaded at run time)

S-121

Standard Libraries: Example

#1 ncl ude <stdi o. h>

[* #include <math. h> */

Int main(void)

{
printf(“Square root of 2 is %¥\n", sqgrt(2)),;
return(0);

}

* May get various problems/errors when you compile with:
1) gcc exanple.c -o exanpl e
2) gcc exanple.c -m-o0 exanpl e
3) gcc exanple.c -m -0 exanple #with math.hincluded

S-122

Files and Directories

Disk drives divided into partitions

Each partition contains afilesystem (type df for alisting of
filesystems mounted on any given computer)

Filesystems are mounted onto existing filenames (Fig 8.4, p.241)

Each filesystem has a boot block, a super block, an ilist containing
Inodes (short for index nodes), directory blocks, and data blocks

An inode contains all the information about afile: type, time of |ast
modification/write/access, uid/gid of creator, size, permissions, etc.

Directories are just lists of inodes (2 files automatically created with
mkdir: “. ” (inode of directory) and “. . " (inode of parent directory)

See figure 8.3 (page 240) for an example.

S-123

Example: argc/argv

#i ncl ude <stdi o. h>
#i ncl ude <sys/stat. h>
Int main(int argc, char *argv|[])

{
1 f(argc == 2)
{
struct stat buf;
| f(stat(argv[1l], &buf) I'=-1)
printf(“file % has size %\n”, argv[1],
buf. st _size);
}
return(0);
}

S-124

Miscellaneous

f open/fread/f writelf cl ose, etc. are implemented in terms of
low-level non-standard i/o functionsopen/r ead/wr i t e/cl ose, etc.

There are 3 types of buffering:
— fully buffered (or block buffered):
 actual physical i/o takes place only when buffer isfilled
— line buffered:
 actual i/o takes place when a newline (\ n) is encountered
— unbuffered:
 output as soon as possible

All files are normally block buffered, except stdout (line buffered only
If it refersto aterminal), and stderr (always unbuffered)

Canusef fl ush() toforceabuffer to be cleared

S-125

Advanced Library
Functions

String/Character Handling

All “str” functions require input strings be terminated with anull byte

Some of the most common ones:
strlen,strcpy,strcnp,strcat

strt ok usedfor extracting "tokens' from strings

menctpy not just for strings!

strncmp allows limits to be placed on length of strings, other 'n' string
functions

Some function for testing/converting single characters:
| sal pha,isdigit,isspace

t oupper,t ol ower

atoi, atol

S-127

Storage Allocation

* Dynamic memory allocation (very important for many C programs):
mal | oc,call oc,free,reall oc

* An (incomplete) example:
#i ncl ude <stdi o. h>
#include <stdlib. h>
struct xx *sp;
sp = (struct xx *) malloc(5 * sizeof(struct xx));
1 f(sp == (struct xx *) NULL)
{
fprintf(stderr, “out of storage\n”);
exit(-1);

S-128

Date and Time Functions

clock_t, clock(), tinme_t, tinme()

Most UNIX time functions have evolved from various sources, and are
sometimes inconsistent, referring to time as one of:

— the number of seconds since Jan 1, 1970 (or Jan 1, 1900)
— the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
— the broken down structure “st r uct t ni
(see/ usr/include/tine. h)
— the broken down structure“st ruct ti neval”
(see/ usr/include/ sys/tine. h)

Some are intended for time/date, whereas others are intended for
measuring elapsed time

S-129

Variable Arguments

e Anunder-used but very powerful feature

« printf() isanexamplewherethe number and types of arguments
can differ from invocation to invocation

« /usr/include/ stdarg. h provides definitions of:
— agpecial typenamedva_| i st
— three macros to implement variable arguments:
e va_start
« va_end
e va_arg
» Another useful functionis “vf pri nt f”, asshown in the next slide

S-130

Variable Arguments

o A very useful example:

#i ncl ude <stdarg. h>

voi d Abort(char *fm, ...)

{
va |ist args;
va_start(args, fnt);
fprintf(stderr, "\n\t");
viprintf(stderr, fnt, args);
fprintf(stderr, "\n\n");
va_end(args);
exit(-1);

S-131

Environment Interfacing

Reading environment variables:
getenv(“PATH);

Executing a“$SHELL” shell command:
fflush(stdout);
system “Is -atl”);

Can also execute a system call and have its output sent to a pipe
Instead of stdout: (we'll talk more about pipes in chapter 12)

FI LE *pi pe;
pi pe = popen(“ls -atl”, “r”);
pcl ose(pipe);

S-132

