
1

S -119

Library Functions

S -120

Standard Libraries

• Any system call is not part of the C language definition
• Such system calls are defined in libraries, identified with the suffix .a

• Libraries typically contain many .o object files

• To create your own library archive file:
ar crv mylib.a *.o

• Disregard “ranlib” command in Wang, p311 (no longer needed)

• Look in /usr/lib and /usr/local/lib for most system libraries

• Can list all .o files in an archive use “ar t /usr/lib/lib.a”

• More useful to see all the function names:
/usr/ccs/bin/nm /usr/lib/libc.a | grep FUNC

S -121

Standard Libraries (cont)

• By default, gcc links /usr/lib/libc.a to all executables

• Typing “man 3 intro” will give a list of most of the standard library
functions

• Any other libraries must be explicitly linked by referring to the absolute
pathname of the library, or preferably by using the “-l” gcc switch:

gcc *.o /usr/lib/libm.a -o mathExamples

gcc *.o -lm -o mathExamples

• These .a files are also sometimes referred to as static libraries

• Often you will find for each system .a file a corresponding .so file,
referred to as a shared object (not needed for this course)

• Advantage of shared objects: smaller executable files (library functions
loaded at run time)

S -122

Standard Libraries: Example

#include <stdio.h>

/* #include <math.h> */

int main(void)

{

 printf(“Square root of 2 is %f\n”, sqrt(2));

 return(0);

}

• May get various problems/errors when you compile with:
1) gcc example.c -o example

2) gcc example.c -m -o example

3) gcc example.c -m -o example # with math.h included

S -123

Files and Directories

• Disk drives divided into partitions
• Each partition contains a filesystem (type df for a listing of

filesystems mounted on any given computer)

• Filesystems are mounted onto existing filenames (Fig 8.4, p.241)

• Each filesystem has a boot block, a super block, an ilist containing
inodes (short for index nodes), directory blocks, and data blocks

• An inode contains all the information about a file: type, time of last
modification/write/access, uid/gid of creator, size, permissions, etc.

• Directories are just lists of inodes (2 files automatically created with
mkdir: “.” (inode of directory) and “..” (inode of parent directory)

• See figure 8.3 (page 240) for an example.

S -124

Example: argc/argv

#include <stdio.h>

#include <sys/stat.h>

int main(int argc, char *argv[])

{

 if(argc == 2)

 {

 struct stat buf;

 if(stat(argv[1], &buf) != -1)

 printf(“file %s has size %d\n”, argv[1],

 buf.st_size);

 }

 return(0);

}

2

S -125

Miscellaneous

• fopen/fread/fwrite/fclose, etc. are implemented in terms of
low-level non-standard i/o functions open/read/write/close, etc.

• There are 3 types of buffering:

– fully buffered (or block buffered):

• actual physical i/o takes place only when buffer is filled

– line buffered:

• actual i/o takes place when a newline (\n) is encountered

– unbuffered:

• output as soon as possible

• All files are normally block buffered, except stdout (line buffered only
if it refers to a terminal), and stderr (always unbuffered)

• Can use fflush() to force a buffer to be cleared

S -126

Advanced Library
Functions

S -127

String/Character Handling
• All “str” functions require input strings be terminated with a null byte

• Some of the most common ones:
strlen, strcpy, strcmp, strcat

• strtok used for extracting "tokens" from strings

• memcpy not just for strings!

• strncmp allows limits to be placed on length of strings, other 'n' string
functions

• Some function for testing/converting single characters:

isalpha, isdigit, isspace

toupper, tolower

atoi, atol

S -128

Storage Allocation

• Dynamic memory allocation (very important for many C programs):
malloc, calloc, free, realloc

• An (incomplete) example:
#include <stdio.h>

#include <stdlib.h>

struct xx *sp;

sp = (struct xx *) malloc(5 * sizeof(struct xx));

if(sp == (struct xx *) NULL)

{

 fprintf(stderr, “out of storage\n”);

 exit(-1);

}

S -129

Date and Time Functions

• clock_t, clock(), time_t, time()

• Most UNIX time functions have evolved from various sources, and are
sometimes inconsistent, referring to time as one of:

– the number of seconds since Jan 1, 1970 (or Jan 1, 1900)

– the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)

– the broken down structure “struct tm”

(see /usr/include/time.h)

– the broken down structure “struct timeval”

(see /usr/include/sys/time.h)

• Some are intended for time/date, whereas others are intended for
measuring elapsed time

S -130

Variable Arguments

• An under-used but very powerful feature
• printf() is an example where the number and types of arguments

can differ from invocation to invocation

• /usr/include/stdarg.h provides definitions of:

– a special type named va_list

– three macros to implement variable arguments:
• va_start

• va_end

• va_arg

• Another useful function is “vfprintf”, as shown in the next slide

3

S -131

Variable Arguments

• A very useful example:
#include <stdarg.h>

void Abort(char *fmt, ...)

{

 va_list args;

 va_start(args, fmt);

 fprintf(stderr, "\n\t");

 vfprintf(stderr, fmt, args);

 fprintf(stderr, "\n\n");

 va_end(args);

 exit(-1);

}

S -132

Environment Interfacing

• Reading environment variables:
getenv(“PATH”);

• Executing a “$SHELL” shell command:

fflush(stdout);

system(“ls -atl”);

• Can also execute a system call and have its output sent to a pipe
instead of stdout: (we’ll talk more about pipes in chapter 12)

FILE *pipe;

pipe = popen(“ls -atl”, “r”);

...

pclose(pipe);

