Library Functions

S-119

Standard Libraries

« Any system call is not part of the C language definition

« Such system calls are defined in libraries, identified with the suffix . a

« Librariestypically contain many . o object files

« To create your own library archivefile:
ar crv nylib.a *.o

« Disregard “r anl i b” command in Wang, p311 (no longer needed)

¢ Lookin/usr/lib and/usr/local/lib for most system libraries

« Canlistdl .ofilesinanarchiveuse“ar t /usr/lib/lib.a"

* Moreuseful to see all the function names:
lusr/ccs/bin/nm/usr/lib/libc.a | grep FUNC

5-120

Standard Libraries (cont)

By default, gcc links/ usr/ i b/ 1i bc. a toall executables
Typing“man 3 i ntro” will givealist of most of the standard library
functions

Any other libraries must be explicitly linked by referring to the absolute
pathname of the library, or preferably by using the “- | " gcc switch:

gcc *.o /usr/lib/libma -o nathExanpl es
gcc *.o0 -Im-o mat hExanpl es
These. a files are also sometimes referred to as static libraries

Often you will find for each system . a file acorresponding . so file,
referred to as ashared object (not needed for this course)

Advantage of shared objects: smaller executable files (library functions
loaded at run time)

s-121

Standard Libraries. Example

#i ncl ude <stdio. h>
/* #include <math. h> */
int main(void)
{
printf(“Square root of 2 is %\n", sqrt(2));
return(0);
}
« May get various problems/errors when you compile with:
1) gcc exanple.c -o exanple
2) gcc exanple.c -m-o0 exanple
3) gcc exanple.c -m-o0 exanple #with math.hincluded

s-122

Files and Directories

Disk drives divided into partitions

Each partition contains a filesystem (type df for alisting of
filesystems mounted on any given computer)

Filesystems are mounted onto existing filenames (Fig 8.4, p.241)
Each filesystem has a boot block, a super block, an ilist containing
inodes (short for index nodes), directory blocks, and data blocks
Aninode contains all the information about afile: type, time of last
modification/write/access, uid/gid of creator, size, permissions, etc.
Directories are just lists of inodes (2 files automatically created with
mkdir: “. " (inode of directory) and “. . " (inode of parent directory)
See figure 8.3 (page 240) for an example.

s-123

Example: argc/argv

#i ncl ude <stdio. h>
#include <sys/stat.h>
int min(int argc, char *argv[])

{

if(argc == 2)
{

struct stat buf;

if(stat(argv[1], &uf) !=-1)

printf(“file % has size %\n", argv[1],
buf . st_size);

}

return(0);

S-124

Miscellaneous

« fopen/fread/fwite/fclose,etc. areimplemented in terms of
low-level non-standard i/o functionsopen/r ead/wr i t e/cl ose, etc.

« There are 3 types of buffering:
— fully buffered (or block buffered):
« actual physical i/o takes place only when buffer isfilled
— line buffered:
« actual i/o takes place when anewline (\ n) is encountered
— unbuffered:
« output as soon as possible

« All filesare normally block buffered, except stdout (line buffered only
if it refersto aterminal), and stderr (always unbuffered)
« Canusefflush() toforceabuffer to be cleared

S-125

Advanced Library
Functions

5-126

String/Character Handling

« All “str” functions require input strings be terminated with anull byte
« Some of the most common ones:
strlen,strcpy,strcnp,strcat
« strtok usedfor extracting “tokens' from strings
« mencpy notjust for strings!
« strncmp alows limits to be placed on length of strings, other 'n' string
functions

« Some function for testing/converting single characters:
i sal pha,isdigit,isspace
t oupper,tol owner
atoi, atol

s-127

Storage Allocation

« Dynamic memory allocation (very important for many C programs):
mal | oc,cal l oc,free,reall oc

* An (incomplete) example:
#i ncl ude <stdio. h>
#incl ude <stdlib. h>
struct xx *sp;
sp = (struct xx *) malloc(5 * sizeof(struct xx));
if(sp == (struct xx *) NULL)
{
fprintf(stderr, “out of storage\n"”);
exit(-1);

s-128

Date and Time Functions

« clock_t, clock(), tine_t, tine()
* Most UNIX time functions have evolved from various sources, and are
sometimes inconsistent, referring to time as one of:
— the number of seconds since Jan 1, 1970 (or Jan 1, 1900)
— the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
— the broken down structure “st ruct t ni
(see/usr/include/tine.h)
— the broken down structure “st ruct tineval ”
(see/usr/include/sys/tine.h)
* Some areintended for time/date, whereas others are intended for
measuring elapsed time

S-129

Variable Arguments

« Anunder-used but very powerful feature
« printf() isanexamplewherethe number and types of arguments
can differ from invocation to invocation
« Jusr/include/stdarg. h provides definitions of:
— aspecia typenamedva_| i st
— three macros to implement variable arguments:

e va_start
« va_end
e va_arg

« Another useful functionis “vf pri ntf”, asshownin the next slide

5-130

Variable Arguments

A very useful example:
#i ncl ude <stdarg. h>
void Abort(char *fnt, ...)

{

va_list args;

va_start(args, fnt);
fprintf(stderr, "\n\t");
viprintf(stderr, fnt, args);
fprintf(stderr, "\n\n");
va_end(args);

exit(-1);

s-131

Environment Interfacing

Reading environment variables:
getenv(“PATH);
Executing a“$SHELL" shell command:
fflush(stdout);
systen(“ls -atl”);
Can also execute asystem call and have its output sent to a pipe
instead of stdout: (we'll talk more about pipes in chapter 12)
FI LE *pi pe;
pi pe = popen(“Is -atl”, “r”);

pcl ose(pipe);

5-132

