C: Primer and
Advanced Topics

Style

e Basics:
— comments
— white space
— modularity

« Naming conventions:
— variableNames ("Hungarian Notation": m_pMyInt, bDone)
— FunctionNames
— tTypeDefinitions
— CONSTANTS

S-95

Brace Styles

K&R: e non-K&R:

if (total > 0) { if (total > 0)

printf(“Pay up!”); { " "
total = 0; printf("Pay up!");
- total = 0 ;
} else {)
printf(“CGoodbye”); el se

} {
printf (" Godbye");

}

S-96

Variables and Storage

e Syntax:
<type> <varNane> [= initVal ue];

o Types (incompletelist):

— char

— short

— int

— long

— float

— double

— all can be: signed (default) or unsigned

S-97

Operators

Arithmetic Operators:

*) /) +1 T %
Relational Operators:
< <=, > >= == | =

Assignment Operators:

= +=, -= *= [= ++ --
— don't abusethese, iee 0 = --0 - O--;
Logic Operators:

&&, ||, !
Bitwise Operators:

& |, ~ >> <<

S-98

Arrays

Arrays start at ZERQ! (amistake you will make often, trust me)
Arrays of int, float, etc. are pretty intuitive
| nt nont hs[12] ;

fl oat scores[30];
Strings are arrays of char (C' s treatment of stringsis not so intuitive)
— see Wang, Appendix 12 for string handling functions
Multi-dimensional arrays:

Int matrix[2][4]; (notmatri x[2, 4])

S-99

Decision and Control

1 f(condition)

st at enent ;
el se
st at enent ;
whil e(condition)
st at enent
for(initial; condition; iteration)
st at enent ;
do
st at enent ;

whil e(condition)

br eak and cont i nue useful inside loops

S-100

Decision and Control (cont)

swtch (expression)

case constant 1:
st at enent ;
br eak;

case const ant 2:
st at enent ;
br eak;

def aul t:
st at enent ;
br eak;

S-101

Scope

Scopes are delimited with curly braces

“{” <scope> “}”
New scopes can be added in existing scopes
Child scopes inherit visibility from parent scope
Parent scope cannot see into child scopes
Outermost scopes are all functions

These scope rules are all similar to those of Turing and other common
programming languages

S-102

Functions

Definition:
<type> <functionNane> ([type paramNane], ...)
No “procedures’ in C ... only functions
Every function should have a prototype
Example:
float area(float wdth, float height);

float area(float wdth, float height)

{
return(wdth * height);

S-103

Preprocessor

#i ncl ude (<file.h> versus “file.h")

#def i ne (constants as well as macros)

#i f def (useful for debugging and multi-platform code)
statenents

#el se

statenents
#endi f

S-104

Structs

struct [<structureNanme>]

{

—

<fi el dType> <fi el dNane>;
[<vari abl eName>] ;
structureName and variableName are optional, but should always have

at least one, otherwise it’s useless (can't ever be referenced)

Example:

struct

{

}

Il nt quantity;
char nane[80] ;
| nvent or yDat a;

S-105

Typedefs and Enumerated Types

t ypedef <typeDecl aration>;
 Example
t ypedef int tBool ean;
t Bool ean fl ag;

enum <enunmNane> { tagl, tag2, ... } <vari abl eNane>
 Example:
enum days { SUN, MON, TUE, WED, THU, FRI, SAT };
enum days today = MON;
or
typedef enum{ SUN, MON, TUE } t Day,;
t Day today = MON;

S-106

Pointers

A pointer is atype that points to another type in memory
Pointers are typed: a pointer to an int is different than a pointer to along

An asterisk before avariable name in its declaration makes it a pointer
— l.e.int *currPoi nter; (pointertoaninteger)
— l.e.char *nanes[10]; (anarray of char pointers)

An ampersand (&) givesthe address of a pointer
— l.e.currPtr = &val ue; (makescurrPtr point to value)

An asterisk can also be used to de-reference a pointer
— l.e.currValue = *currbtr;

S-107

Pointers (cont)

Use brackets to avoid confusion:
—lee*(currPtr++); isverydfferentfrom(*currPtr) ++;

Using ++ on a pointer will increment the pointer’ s address by the size
of the type pointed to

Y ou can use pointers as if they were arrays (in fact, arrays are
Implemented a pointers)

S-108

Command Line Arguments

Int main(int argc, char *argv[])

{

ar gc isthe number of arguments on the command line, including the
program name

The array ar gv contains the actual arguments
Example:
1 f(argc == 3)
printf(“filel:% file2:%\n",
argv[1l], argv[2]);

S-109

Casting

Y ou can force one type to be interpreted as another type through
casting, i€

sonmeSi gnedlnt = (signed int) soneuUnsi gnedl nt;

Be careful, as C has no type checking, so you can mess things up if
you're not careful

NULL pointer should always be cagt, ie:
— (char *) NULL, (int *) NULL, etc.

S-110

Library Functions
for 1/O

Opening and Closing Files (10.2)

FILE *fp;
fp = fopen(fileNanme, “r”);
fclose(fp);

« fpisoftype “FI LE*” (defined in stdio.h)
 fopen returnsapointer (or NULL if unsuccessful) to the specified
fileName with the given permissions:

-7 read
— “w” write (create new, or wipe out existing fileName)
- “a’ append (create new, or append to existing fileName)

— “r+” read and write

S-112

Character-by-Character 1/0

fgetc(fp) #returnsnext character from files referenced by fp
getc(fp) #sameasfgetc, but implemented asamacro
get char () # same as getc(stdin)

e Thesereturn the constant “EOF" when the end-of-file is reached
fputc(c, fp) #outputscharacter cto filereferenced by fp

putc(c, fp) #sameasfputc, but implemented asamacro
putchar(c) # same as putc(¢, stdout)

S-113

Line-by-Line Input

fgets(data, size, fp) #readnextlinefromfp (upto size)
gets(data) # read next line from stdin

« fgets() ispreferabletoget s()
* Returns address of dat a array (or NULL if EOF or other error occurred)
 Example:

#defi ne MAX LENGTH 256

char i nput Dat a] MAX LENGTH] ;

FI LE *f p;

fp = fopen(argv[1l], “r”);

fgets(1 nputData, MAX LENGIH, fp);

S-114

Line-by-Line Output

fputs(data, fp) #printsstring “data’ on stream referenced by fp
puts(data) # same as fputs(data, stdout) except a newline
Is automatically appended

S-115

Formatted Output

printf(fnt, args ...)
fprintf(fp, fm, args ...)
sprintf(string, fnt, args ...)
 Examples:

fprintf(stderr, “Can’t open %\n”, argv[1l]);
sprintf(fileNane, “%”, argv[l]);

 sprintf example above better achieved with“st r cpy() ” function
o K&R book or man pages for all the details

S-116

Formatted | nput

scanf(fnmt, *args ...)

fscanf(fp, fm, *args ...)
sscanf(string, fnm, *args ...)
 Examples:

fscanf(fp, “% %", firstName, |astnane);
sscanf(argv[l], “% %", & ntl, & nt2);

* Returns number of successful args matched ... be careful, scanf should
only be used in limited cases where exact format is know in advance

o SeeK&R book or man pages for all the details

S-117

Binary |/O

fread(buf, size, numtens, fp)
fwite(buf, size, numtens, fp)

 Examples:
fread(readBuf, sizeof(char), 80, stdin);
fwite(witeBuf, sizeof(struct utnmpx), 1, fp);

e Returns number of successful items read or written

e Other functions:
rew nd(fp); fseek(fp, offset, kind); ftell (fp);

S-118

