C: Primer and
Advanced Topics

Style

* Basics:
— comments
— white space
— modularity

« Naming conventions:
— variableNames ("Hungarian Notation": m_pMylnt, bDone)
— FunctionNames
— tTypeDefinitions
— CONSTANTS

Variables and Storage

« Syntax:
<type> <varName> [= initVal ue];

« Types (incomplete list):

— char

— short

— int

— long

— float

— double

— all can be: signed (default) or unsigned

S-94
¢ KeR - nonK&R:
if (total > 0) { i{f (total > 0)
rintf(“Pay up!”); . . .
tpotal So-) printf("Pay up!");
o total =0 ;
} else {)
printf(“Goodbye”); el se
{
! printf("Goodbye");
S-96
« Arithmetic Operators:
LY
« Relational Operators:
<, <=, >, >=, ==, |=
* Assignment Operators:
= 4=, -3, Y= = 4 -
— don't abusethese,ie. 0 = --0 - 0--;
« Logic Operators:
&& |, !
« Bitwise Operators:
& |, ~ >, <<
S-98

Arrays

* Arraysstart at ZERO! (amistake you will make often, trust me)
« Arraysof int, float, etc. are pretty intuitive
int nonths[12];
float scores[30];
« Strings are arrays of char (C's treatment of stringsis not so intuitive)
— see Wang, Appendix 12 for string handling functions
« Multi-dimensional arrays:
int matrix[2][4]; (notmatrix[2,4])

Decision and Control

if(condition)

statenent;
el se
statenent;
whi le(condition)
st at ement
for(initial; condition; iteration)
statenent ;
do
statenent;

whi l e(condition)

« break andcont i nue useful insideloops

5-100

Decision and Control (cont)

switch (expression)

case constant 1:
statenent;
br eak;

case constant 2:
statenent;
br eak;

defaul t:
statenent;
br eak;

s-101

Scope

« Scopes are delimited with curly braces
“{" <scope> “}"
« New scopes can be added in existing scopes
« Child scopes inherit visibility from parent scope
« Parent scope cannot see into child scopes
« Outermost scopes are al functions
« These scoperulesareall similar to those of Turing and other common
programming languages

S-102

Functions

« Definition:
<type> <functionNane> ([type paranmNane],
* No “procedures’ in C ... only functions
« Every function should have a prototype
* Example:
float area(float width, float height);

float area(float width, float height)

{
return(width * height);

5-103

Preprocessor

#i ncl ude (<file.h> versus “file.h")

#define (constants as well as macros)

#i f def (useful for debugging and multi-platform code)
statenents

#el se
statenents

#endi f

Structs

struct [<structureNanme>]
{

<fiel dType> <fi el dNane>;
} [<vari abl eNane>];

« structureName and variableName are optional, but should always have

at least one, otherwiseit's useless (can't ever be referenced)
« Example: struct
{
int quantity;
char nane[80] ;
} inventoryData;

5-105

Typedefs and Enumerated Types

typedef <typeDeclaration>;
* Example:
typedef int tBool ean;
t Bool ean flag;

enum <enumNane> { tagl, tag2, ... } <variabl eName>
* Example:
enum days { SUN, MN, TUE, WED, THU, FRI, SAT };
enum days today = MN,
or
typedef enum{ SUN, MON, TUE } tDay;
tDay today = MON;

5-106

Pointers

« A pointer isatype that points to another type in memory
« Pointers are typed: apointer to an int is different than a pointer to along

« An asterisk before avariable name in its declaration makes it a pointer
— i.exint *currPointer; (pointertoaninteger)
— i.e:char *nanes[10]; (anarray of char pointers)

« Anampersand (&) gives the address of a pointer
— i.ezcurrPtr = &val ue; (makescurrPtr point to value)

« An asterisk can also be used to de-reference a pointer
— i.e:currValue = *currPtr;

s-107

Pointers (cont)

* Use brackets to avoid confusion:
— iex*(currPtr++); isverydifferentfrom(*currPtr) ++;

« Using ++ on apointer will increment the pointer’s address by the size
of the type pointed to

« You can use pointers asif they were arrays (in fact, arrays are
implemented a pointers)

S-108

Command Line Arguments

int min(int argc, char *argv[])

{

« argc isthenumber of arguments on the command line, including the
program name
« Thearray ar gv contains the actual arguments
* Example:
if(argc == 3)
printf(“filel:% file2:%\n",
argv[1], argv[2]);

5-109

Casting

« You can force one type to be interpreted as another type through
casting, ie:
someSi gnedlnt = (signed int) someUnsignedlnt;

« Becareful, as C has no type checking, so you can mess things up if
you're not careful

« NULL pointer should always be cast, ie:
— (char *) NULL, (int *) NULL,etc.

5-110

Library Functions
for 1/0

S-111

Opening and Closing Files (10.2)

FILE *fp;
fp = fopen(fileName, “r”);
fclose(fp);

« fpisoftype “FI LE*" (defined in stdio.h)

« fopen returnsapointer (or NULL if unsuccessful) to the specified
fileName with the given permissions:
- read

— W write (create new, or wipe out existing fileName)
“a append (create new, or append to existing fileName)
- r+ read and write

s-112

Character-by-Character |/0

fgetc(fp) #returnsnext character from files referenced by fp
getc(fp) #sameasfgetc, butimplemented asamacro
getchar () # same as getc(stdin)

« Thesereturn the constant “EOF” when the end-of-file is reached
fputc(c, fp) #outputscharacter cto filereferenced by fp

putc(¢, fp) #sameasfputc, butimplemented asamacro
putchar(c) # same as putc(c, stdout)

s-113

Line-by-Line Input

fgets(data, size, fp) #readnextlinefromfp (uptosize)
gets(data) #read next line from stdin

« fgets() ispreferabletoget s()
* Returns address of dat a array (or NULL if EOF or other error occurred)
* Example:

#define MAX_LENGTH 256

char i nput Dat a[MAX_LENGTH] ;

FILE *fp;

fp = fopen(argv[1l], “r");

fgets(inputData, MAX LENGTH, fp);

s-114

Line-by-Line Output

fputs(data, fp) #printsstring“data’ on stream referenced by fp
puts(data) # same as fputs(data, stdout) except anewline
is automatically appended

s-115

Formatted Output

printf(fnt, args ...)
fprintf(fp, fnm, args ...)
sprintf(string, fnt, args ...)
* Examples:

fprintf(stderr, “Can't open %s\n”, argv[1]);
sprintf(fileName, “%”, argv[1]);

« sprintf exampleabove better achieved with “st r cpy() " function
* K&R book or man pages for all the details

S-116

Formatted | nput

scanf(fmt, *args ...)
fscanf(fp, fnt, *args ...)
sscanf(string, fm, *args ...)

* Examples:
fscanf(fp, “% %", firstNane, |astnane);
sscanf(argv[1], “% %", & ntl, & nt2);

* Returns number of successful args matched ... be careful, scanf should
only be used in limited cases where exact format is know in advance
* See K&R book or man pages for al the details

s-117

Binary I/0

fread(buf, size, numtens, fp)
fwite(buf, size, numtens, fp)

* Examples:
fread(readBuf, sizeof(char), 80, stdin);
fwite(witeBuf, sizeof(struct utmpx), 1, fp);

« Returns number of successful itemsread or written

« Other functions:
rewi nd(fp); fseek(fp, offset, kind); ftell(fp);

s-118

