
1

S -94

C: Primer and
 Advanced Topics

S -95

Style

• Basics:

– comments

– white space

– modularity

• Naming conventions:

– variableNames ("Hungarian Notation": m_pMyInt, bDone)

– FunctionNames

– tTypeDefinitions

– CONSTANTS

S -96

Brace Styles

• K&R:

if (total > 0) {
printf(“Pay up!”);

 total = 0;

} else {

 printf(“Goodbye”);

}

• non-K&R:

if (total > 0)
{
 printf("Pay up!");
 total = 0 ;
}
else
{
 printf("Goodbye");
}

S -97

Variables and Storage

• Syntax:
<type> <varName> [= initValue];

• Types (incomplete list):

– char

– short

– int

– long

– float

– double

– all can be: signed (default) or unsigned

S -98

Operators

• Arithmetic Operators:
*, /, +, -, %

• Relational Operators:
<, <=, >, >=, ==, !=

• Assignment Operators:
=, +=, -=, *=, /=, ++, --

– don’t abuse these, ie: o = --o - o--;

• Logic Operators:
&&, ||, !

• Bitwise Operators:
&, |, ~, >>, <<

S -99

Arrays

• Arrays start at ZERO! (a mistake you will make often, trust me)

• Arrays of int, float, etc. are pretty intuitive
int months[12];

float scores[30];

• Strings are arrays of char (C’s treatment of strings is not so intuitive)

– see Wang, Appendix 12 for string handling functions

• Multi-dimensional arrays:

int matrix[2][4]; (not matrix[2,4])

2

S -100

Decision and Control

if(condition)

statement;

else

statement;

while(condition)

statement

for(initial; condition; iteration)

statement;

do

statement;

while(condition)

• break and continue useful inside loops

S -101

Decision and Control (cont)

switch (expression)

case constant1:

statement;

break;

case constant2:

statement;

break;

default:

statement;

break;

S -102

Scope

• Scopes are delimited with curly braces
“{” <scope> “}”

• New scopes can be added in existing scopes

• Child scopes inherit visibility from parent scope

• Parent scope cannot see into child scopes

• Outermost scopes are all functions

• These scope rules are all similar to those of Turing and other common
programming languages

S -103

Functions

• Definition:
<type> <functionName> ([type paramName], ...)

• No “procedures” in C … only functions

• Every function should have a prototype

• Example:

float area(float width, float height);

float area(float width, float height)

{

 return(width * height);

}

S -104

Preprocessor

#include (<file.h> versus “file.h”)

#define (constants as well as macros)

#ifdef (useful for debugging and multi-platform code)

 statements

#else

 statements

#endif

S -105

Structs

struct [<structureName>]

{

 <fieldType> <fieldName>;

} [<variableName>];

• structureName and variableName are optional, but should always have
at least one, otherwise it’s useless (can’t ever be referenced)

• Example: struct

 {

 int quantity;

 char name[80];

 } inventoryData;

3

S -106

Typedefs and Enumerated Types

typedef <typeDeclaration>;

• Example:
typedef int tBoolean;

tBoolean flag;

enum <enumName> { tag1, tag2, ... } <variableName>

• Example:
enum days { SUN, MON, TUE, WED, THU, FRI, SAT };

enum days today = MON;

or
typedef enum { SUN, MON, TUE } tDay;

tDay today = MON;

S -107

Pointers

• A pointer is a type that points to another type in memory

• Pointers are typed: a pointer to an int is different than a pointer to a long

• An asterisk before a variable name in its declaration makes it a pointer

– i.e.: int *currPointer; (pointer to an integer)

– i.e.: char *names[10]; (an array of char pointers)

• An ampersand (&) gives the address of a pointer
– i.e.: currPtr = &value; (makes currPtr point to value)

• An asterisk can also be used to de-reference a pointer
– i.e.: currValue = *currPtr;

S -108

Pointers (cont)

• Use brackets to avoid confusion:
– ie: *(currPtr++); is very different from (*currPtr)++;

• Using ++ on a pointer will increment the pointer’s address by the size
of the type pointed to

• You can use pointers as if they were arrays (in fact, arrays are
implemented a pointers)

S -109

Command Line Arguments

int main(int argc, char *argv[])

{

. . .

• argc is the number of arguments on the command line, including the
program name

• The array argv contains the actual arguments

• Example:
if(argc == 3)

 printf(“file1:%s file2:%s\n”,

 argv[1], argv[2]);

S -110

Casting

• You can force one type to be interpreted as another type through
casting, ie:
 someSignedInt = (signed int) someUnsignedInt;

• Be careful, as C has no type checking, so you can mess things up if
you’re not careful

• NULL pointer should always be cast, ie:

– (char *) NULL, (int *) NULL, etc.

S -111

Library Functions
 for I/O

4

S -112

Opening and Closing Files (10.2)

FILE *fp;

fp = fopen(fileName, “r”);

fclose(fp);

• fp is of type “FILE*” (defined in stdio.h)

• fopen returns a pointer (or NULL if unsuccessful) to the specified
fileName with the given permissions:

– “r” read

– “w” write (create new, or wipe out existing fileName)

– “a” append (create new, or append to existing fileName)

– “r+” read and write

S -113

Character-by-Character I/O

fgetc(fp) # returns next character from files referenced by fp

getc(fp) # same as fgetc, but implemented as a macro

getchar() # same as getc(stdin)

• These return the constant “EOF” when the end-of-file is reached

fputc(c, fp) # outputs character c to file referenced by fp

putc(c, fp) # same as fputc, but implemented as a macro

putchar(c) # same as putc(c, stdout)

S -114

Line-by-Line Input

fgets(data, size, fp) # read next line from fp (up to size)

gets(data) # read next line from stdin

• fgets() is preferable to gets()

• Returns address of data array (or NULL if EOF or other error occurred)

• Example:

#define MAX_LENGTH 256

char inputData[MAX_LENGTH];

FILE *fp;

fp = fopen(argv[1], “r”);

fgets(inputData, MAX_LENGTH, fp);

S -115

Line-by-Line Output

fputs(data, fp) # prints string “data” on stream referenced by fp

puts(data) # same as fputs(data, stdout) except a newline

 is automatically appended

S -116

Formatted Output

printf(fmt, args ...)

fprintf(fp, fmt, args ...)

sprintf(string, fmt, args ...)

• Examples:
fprintf(stderr, “Can’t open %s\n”, argv[1]);

sprintf(fileName, “%s”, argv[1]);

• sprintf example above better achieved with “strcpy()” function

• K&R book or man pages for all the details

S -117

Formatted Input

scanf(fmt, *args ...)

fscanf(fp, fmt, *args ...)

sscanf(string, fmt, *args ...)

• Examples:
fscanf(fp, “%s %s”, firstName, lastname);

sscanf(argv[1], “%d %d”, &int1, &int2);

• Returns number of successful args matched … be careful, scanf should
only be used in limited cases where exact format is know in advance

• See K&R book or man pages for all the details

5

S -118

Binary I/O

fread(buf, size, numItems, fp)

fwrite(buf, size, numItems, fp)

• Examples:
fread(readBuf, sizeof(char), 80, stdin);

fwrite(writeBuf, sizeof(struct utmpx), 1, fp);

• Returns number of successful items read or written

• Other functions:
 rewind(fp); fseek(fp, offset, kind); ftell(fp);

