Still more
UNIX

Core Functionality of Shells

built-in commands (1.13, 6.1)
variables (6.6, 6.7)

wildcards (file name expansion, 6.5)
background processing

scripts

redirection

pipes

subshells

command substitution (6.5)

S-74

Executables vs. Built-ins

Most UNIX commands invoke utility programs that are stored as
executable filesin the directory hierarchy

Shells also contains several built-in commands, which it executes
Internally

Type man shel | _buil ti ns for apartial listing

Built-in commands execute as subroutines, and do not spawn a child-
shell viaf or k()

— Expect built-in (e.g. cd) to be faster than external (e.g. Is)

Built-In: Non-Built-In:

cd, echo, jobs, fg, bg IS, cp, more

S-75

Variables (6.6-7)

Two kinds of variables:
— local
— environment
Both hold data in a string format

Main difference: when a shell invokes another shell, the child shell
gets acopy of its parent’ s environment variables, but not itslocal shell
variables

Any local shell variables which have corresponding environment
variables (t er m pat h, user, etc.) are automatically inherited by
subshells

S-76

Variables (cont.)

* Loca (shell) variables:
— Simple variable: holds one value
— List variable: holds one or more values
— Useset andunset to define, delete, and list values

* Environment variables:
— Usesetenv andpri nt env tosetandlist values

— All environment variables are smple (ie: no list variables ...
compare shell variable $pat h to enviroment variable $PATH)

S-77

Startup Files (6.9)

Every timecsh isinvoked, $HOVE/ . cshr c isread, and contents of
the file are executed

If agiven csh invocation isthe login shell, $HOVE/ . | ogi n will also
be read and its contents executed

csh -f starts a shell without reading initialization files

opening a new xterm under X-windows will (by default) open a new
login shell

S-78

Sourcing files (6.5)

Assume you create afile called “my_aliases’

Typing csh ny_al i ases executesthelinesinthisfile, but it
occursinthe forked csh, so it will have no lasting effect on the
Interactive parent shell

Correct method is to use the source command:
source ny_ali ases

Common setup:
— put al aliasesin afilecaled $HOVE/ . al i as
— add theline “source .adlias’ to thelast line of $HOVE/ . cshrc

S-79

Input Processing (6.5)

 When ainput istyped, it is processed as follows:
— history substitution
— alias substitution
— variable substitution
— command substitution
— file name expansion

S-80

Command Substitution (6.5)

« Can substitute the output from a command into the text string of a

command

set dir = pwd

set nane = pwd /test.cC
set x = /bin/ls -1 $file

S-81

UNIX
Systems Programming

System Calls

o System calls:
— perform a subroutine call directly to the UNIX kernel

e 3 maln categories:
— file management
— process management
— error handling

S-83

Error Handling

All system calls return -1 if an error occurs
errno:
— global variable that holds the numeric code of the last system call
perror():
— asubroutine that describes system call errors
Every process has errno initialized to zero at process creation time
When a system call error occurs, er r no is set
See/ usr/include/sys/errno.h
A successful system call never affects the current value of er r no

An unsuccessful system call always overwrites the current value of
errno

S-84

perror ()

Library routine;
void perror(char *str)

perror displaysst r, then acolon (:), then an english description of
the last system call error, as defined in the header file

[usr/include/sys/errno.h
Protocol:
— check system callsfor areturn value of -1

— cdl perror () for anerror description during debugging
(see example on next slide)

S-85

perror () example

#1 ncl ude <stdi o. h>
#1 ncl ude <errno. h>

int main(void)

{
I nt returnVal ;
printf("x2 before the execlp, pid=%\n", getpid());
returnVal = execl p("nonexistent file", (char *) 0);
1 f(returnvVal == -1)
perror("x2 failed");
return(1);
}

S-86

Processes Termination

Orphan process

— aprocess whose parent isthe init process (pid 1) because its
original parent died beforeit did

Terminating aprocess. exi t ()
System call:
Int exit(int status)

Every normal processis achild of some parent, aterminating process
sends its parent a SI GCHL D signal and waits for its termination code

status to be accepted

The C shell stores the termination code of the last command in the
local shell variable st at us

S-87

Zombies

e Zombie process:
— aprocessthat is“waiting” for its parent to accept its return code
— aparent accepts a child s return code by executingwai t ()
— showsupwith'Z'inps -a

* A terminating process may be a (multiple) parent; the kernel ensures
all of its children are orphaned and adopted by 1 ni t

S-88

wal t ()

« Waiting for achild: system call is
Int wait(int *status)

e A processthat callswai t () can:
— block (if al of its children are still running)

— return immediately with the termination status of a child (if achild
has terminated and is waiting for its termination status to be
fetched)

— return immediately with an error (it it doesn’t have any child
[Processes)

 Moredetailsin afew weeks, when we cover Chapter 11 of Wang

S-89

Signals

Unexpected/unpredictable events:
— floating point error
— interval timer expiration (alarm clock)
— death of achild
— control-C (termination request)
— control-Z (suspend request)
Events are called interrupts

When the kernel recognizes such an event, it sends the corresponding
process asignal

Normal processes may send other processes asignal, with permission
(useful for synchronization)

Again, we'll cover thisin much more detail in afew weeks

S-90

Race conditions

A race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order
In which the processes run

Thisisasituation when using forks: if any code after the fork
explicitly or implicitly depends on whether or not the parent or child
runsfirst after the fork

A parent processcan call wai t () for achild to terminate (may block)

A child process can wait for the parent to terminate by polling it
(wasteful)

Standard solution isto use signals

S-91

Example: Race Condition

#! fusr/bin/csh -f
set count =0
whi | e($count < 50)
set sharedData = cat shareVal
@ shar edDat a++
echo $sharedData >! shareVal
@ count ++
end

* Createtwo identical copies, “a” and “b”
* Runas ./a& ./b&

S-92

Miscellaneous

 From Wang:

—rlogin (9.3)

— rsh (9.3)

—rcp (9.3)

— finger (1.9, 4.6)
— telnet (9.3)

— ftp (9.4)

S-93

