
1

S -73

Still more
UNIX

S -74

Core Functionality of Shells

• built-in commands (1.13, 6.1)

• variables (6.6, 6.7)

• wildcards (file name expansion, 6.5)

• background processing

• scripts

• redirection

• pipes

• subshells

• command substitution (6.5)

S -75

Executables vs. Built-ins

• Most UNIX commands invoke utility programs that are stored as
executable files in the directory hierarchy

• Shells also contains several built-in commands, which it executes
internally

• Type man shell_builtins for a partial listing

• Built-in commands execute as subroutines, and do not spawn a child-
shell via fork()

– Expect built-in (e.g. cd) to be faster than external (e.g. ls)

Built-In:

cd, echo, jobs, fg, bg

Non-Built-In:

ls, cp, more

S -76

Variables (6.6-7)

• Two kinds of variables:

– local

– environment

• Both hold data in a string format

• Main difference: when a shell invokes another shell, the child shell
gets a copy of its parent’s environment variables, but not its local shell
variables

• Any local shell variables which have corresponding environment
variables (term, path, user, etc.) are automatically inherited by
subshells

S -77

Variables (cont.)

• Local (shell) variables:

– Simple variable: holds one value

– List variable: holds one or more values

– Use set and unset to define, delete, and list values

• Environment variables:

– Use setenv and printenv to set and list values

– All environment variables are simple (ie: no list variables …
compare shell variable $path to enviroment variable $PATH)

S -78

Startup Files (6.9)

• Every time csh is invoked, $HOME/.cshrc is read, and contents of
the file are executed

• If a given csh invocation is the login shell, $HOME/.login will also
be read and its contents executed

• csh -f starts a shell without reading initialization files

• opening a new xterm under X-windows will (by default) open a new
login shell

2

S -79

Sourcing files (6.5)

• Assume you create a file called “my_aliases”

• Typing csh my_aliases executes the lines in this file, but it
occurs in the forked csh, so it will have no lasting effect on the
interactive parent shell

• Correct method is to use the source command:
source my_aliases

• Common setup:

– put all aliases in a file called $HOME/.alias

– add the line “source .alias” to the last line of $HOME/.cshrc

S -80

Input Processing (6.5)

• When a input is typed, it is processed as follows:

– history substitution

– alias substitution

– variable substitution

– command substitution

– file name expansion

S -81

Command Substitution (6.5)

• Can substitute the output from a command into the text string of a
command

set dir = `pwd`

set name = `pwd`/test.c

set x = `/bin/ls -l $file`

S -82

UNIX
Systems Programming

S -83

System Calls

• System calls:

– perform a subroutine call directly to the UNIX kernel

• 3 main categories:

– file management

– process management

– error handling

S -84

Error Handling

• All system calls return -1 if an error occurs
• errno:

– global variable that holds the numeric code of the last system call

• perror():

– a subroutine that describes system call errors

• Every process has errno initialized to zero at process creation time

• When a system call error occurs, errno is set

• See /usr/include/sys/errno.h

• A successful system call never affects the current value of errno

• An unsuccessful system call always overwrites the current value of
errno

3

S -85

perror()

• Library routine:
void perror(char *str)

• perror displays str, then a colon (:), then an english description of
the last system call error, as defined in the header file

 /usr/include/sys/errno.h

• Protocol:

– check system calls for a return value of -1
– call perror() for an error description during debugging

(see example on next slide)

S -86

perror() example

#include <stdio.h>

#include <errno.h>

int main(void)

{

 int returnVal;

 printf("x2 before the execlp, pid=%d\n", getpid());

 returnVal = execlp("nonexistent_file", (char *) 0);

 if(returnVal == -1)

 perror("x2 failed");

 return(1);

}

S -87

Processes Termination

• Orphan process

– a process whose parent is the init process (pid 1) because its
original parent died before it did

• Terminating a process: exit()

• System call:

int exit(int status)

• Every normal process is a child of some parent, a terminating process
sends its parent a SIGCHLD signal and waits for its termination code
status to be accepted

• The C shell stores the termination code of the last command in the
local shell variable status

S -88

Zombies

• Zombie process:

– a process that is “waiting” for its parent to accept its return code
– a parent accepts a child’s return code by executing wait()

– shows up with 'Z' in ps -a

• A terminating process may be a (multiple) parent; the kernel ensures
all of its children are orphaned and adopted by init

S -89

wait()

• Waiting for a child: system call is
int wait(int *status)

• A process that calls wait() can:

– block (if all of its children are still running)

– return immediately with the termination status of a child (if a child
has terminated and is waiting for its termination status to be
fetched)

– return immediately with an error (it it doesn’t have any child
processes)

• More details in a few weeks, when we cover Chapter 11 of Wang

S -90

Signals
• Unexpected/unpredictable events:

– floating point error

– interval timer expiration (alarm clock)

– death of a child

– control-C (termination request)

– control-Z (suspend request)

• Events are called interrupts

• When the kernel recognizes such an event, it sends the corresponding
process a signal

• Normal processes may send other processes a signal, with permission
(useful for synchronization)

• Again, we’ll cover this in much more detail in a few weeks

4

S -91

Race conditions

• A race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order
in which the processes run

• This is a situation when using forks: if any code after the fork
explicitly or implicitly depends on whether or not the parent or child
runs first after the fork

• A parent process can call wait() for a child to terminate (may block)

• A child process can wait for the parent to terminate by polling it
(wasteful)

• Standard solution is to use signals

S -92

Example: Race Condition

#!/usr/bin/csh -f

set count = 0

while($count < 50)

 set sharedData = `cat shareVal`

 @ sharedData++

 echo $sharedData >! shareVal

 @ count++

end

• Create two identical copies, “a” and “b”

• Run as: ./a&; ./b&

S -93

Miscellaneous

• From Wang:
– rlogin (9.3)

– rsh (9.3)

– rcp (9.3)

– finger (1.9, 4.6)

– telnet (9.3)

– ftp (9.4)

