Still more
UNIX

Core Functionality of Shells

built-in commands (1.13, 6.1)
variables (6.6, 6.7)

wildcards (file name expansion, 6.5)
background processing

scripts

redirection

pipes

subshells

command substitution (6.5)

Executables vs. Built-ins

* Most UNIX commandsinvoke utility programs that are stored as
executable filesin the directory hierarchy

« Shellsalso contains several built-in commands, which it executes
internally

« Type man shel | _builti ns forapartial listing

« Built-in commands execute as subroutines, and do not spawn achild-
shell viaf or k()

— Expect built-in (e.g. cd) to be faster than external (e.g. Is)

Built-In: Non-Built-In:

cd, echo, jobs, fg, bg Is, cp, more

Variables (6.6-7)

Two kinds of variables:

— local

— environment
Both hold datain a string format
Main difference: when a shell invokes another shell, the child shell
getsacopy of its parent’s environment variables, but not its local shell
variables
Any local shell variables which have corresponding environment
variables (t er m pat h, user, etc.) are automatically inherited by
subshells

Variables (cont.)

« Local (shell) variables:
— Simple variable: holds one value
— List variable: holds one or more values
— Useset andunset to define, delete, and list values

« Environment variables:
— Usesetenv andprintenv tosetandlist values

— All environment variables are simple (ie: no list variables ...
compare shell variable $pat h to enviroment variable $PATH)

Startup Files (6.9)

Every timecsh isinvoked, $HOVE/ . cshr ¢ isread, and contents of
the file are executed

If agiven csh invocation isthe login shell, SHOVE/ . | ogi n will also
be read and its contents executed
csh -f starts a shell without reading initialization files

opening a new xterm under X-windows will (by default) open a new
login shell

Sourcing files (6.5)

« Assumeyou create afilecalled “my_aliases’

« Typing csh ny_al i ases executesthelinesinthisfile, but it
occursin the forked csh, so it will have no lasting effect on the
interactive parent shell

« Correct method is to use the source command:
source ny_aliases

« Common setup:
— put al aliasesin afilecaled $HOME/ . al i as
— add theline “source .alias’ to the last line of $HOME/ . cshrc

Input Processing (6.5)

When ainput istyped, it is processed as follows:
— history substitution
— alias substitution
— variable substitution
— command substitution
— file name expansion

Command Substitution (6.5)

« Can substitute the output from a command into the text string of a
command

set dir = "pwd
set nane = “pwd /test.c
set x = “/bin/ls -1 $file’

UNIX
Systems Programming

System Calls

. stem calls:
— perform asubroutine call directly to the UNIX kernel

« 3 main categories:
— file management
— process management
— error handling

Error Handling

All system callsreturn -1 if an error occurs
errno:
— global variable that holds the numeric code of the last system call
perror():
— asubroutine that describes system call errors
Every process has errno initialized to zero at process creation time
When a system call error occurs, er r no is set
See/ usr/include/sys/errno.h
A successful system call never affectsthe current value of er r no

An unsuccessful system call always overwrites the current value of
errno

s-84

perror ()

« Library routine:
void perror(char *str)
« perror displaysstr,thenacolon (:), then an english description of
the last system call error, as defined in the header file
/usr/include/sys/errno.h
« Protocol:
— check system calls for areturn value of -1
— cal perror () foranerror description during debugging
(see example on next slide)

perror () example

#i ncl ude <stdio. h>
#i ncl ude <errno. h>

int main(void)

{
int returnval;
printf("x2 before the execlp, pid=%\n", getpid());
returnVal = execl p("nonexistent_file", (char *) 0);
if(returnval == -1)
perror("x2 failed");
return(1);
}

Processes Termination

« Orphan process
— aprocess whose parent is the init process (pid 1) because its
original parent died before it did
« Terminating a process: exi t ()
« Systemcall:
int exit(int status)

« Every normal processis achild of some parent, a terminating process
sendsits parent a SI GCHLD signal and waits for its termination code
status to be accepted

« The C shell stores the termination code of the last command in the
local shell variable st at us

Zombies

« Zombie process:
— aprocess that is “waiting” for its parent to accept its return code
— aparent accepts a child’ s return code by executing wai t ()
— showsupwith'Z'inps -a

« A terminating process may be a (multiple) parent; the kernel ensures
all of its children are orphaned and adopted by i ni t

wai t ()

« Waiting for achild: system call is
int wait(int *status)

« A processthat callswai t () can:

— block (if all of its children are still running)

— return immediately with the termination status of achild (if a child
has terminated and is waiting for its termination status to be
fetched)

— return immediately with an error (it it doesn't have any child
processes)

* Moredetailsin afew weeks, when we cover Chapter 11 of Wang

Signals

« Unexpected/unpredictable events:
— floating point error
— interval timer expiration (alarm clock)
— death of achild
— control-C (termination request)
— control-Z (suspend request)
« Eventsare called interrupts
« When the kernel recognizes such an event, it sends the corresponding
process asignal
« Normal processes may send other processes a signal, with permission
(useful for synchronization)
« Again, we'll cover thisin much more detail in afew weeks

Race conditions

A race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order
in which the processes run

Thisisasituation when using forks: if any code after the fork
explicitly or implicitly depends on whether or not the parent or child
runs first after the fork

A parent process can call wai t () for achild to terminate (may block)
A child process can wait for the parent to terminate by polling it
(wasteful)

Standard solution isto use signals

Example: Race Condition

#!'/usr/bin/csh -f
set count = 0
whi | e($count < 50)

set sharedData = “cat shareVal "
@ shar edDat a++
echo $sharedData >! shareVal
@ count ++
end

Create two identical copies, “a” and “b”
Runas: ./ a& ./b&

Miscellaneous

From Wang:

—rlogin (9.3)
—rsh (9.3)

—rcp (9.3)

— finger (1.9, 4.6)
— telnet (9.3)
—ftp (9.4)

