Basic UNIX
Concepts

What 1s UNIX good for?

Supports many users running many programs at the same time, all
sharing (transparently) the same computer system

Promotes information sharing

More than just used for running software ... geared towards facilitating
the job of creating new programs. So UNIX is“expert friendly”

Got a bad reputation in business because of this aspect

S-47

History (introduction)

Ken Thompson working at Bell Labs in 1969 wanted a small
MULTICS for his DEC PDP-7

He wrote UNIX which was initially written in assembler and could
handle only one user at atime

Dennis Ritchie and Ken Thompson ported an enhanced UNIX to a
PDP-11/20in 1970

Ritchie ported the language BCPL to UNIX in 1970, cutting it down to
fit and calling the result “B”

In 1973 Ritchie and Thompson rewrote UNIX in “C” and enhanced it
some more

Since then it has been enhanced and enhanced and enhanced and ...
See Wang, page 1 for a brief discussion of UNIX variations
POSIX (potable operating system interface) - IEEE, ANS

S-48

Some Terminology

Program: executable file on disk
Process. executing instance of a program

Process |D: unique, non-negative integer identifier (a handle by which
to refer to aprocess)

UNIX kernel: a C program that implements a general interface to a
computer to be used for writing programs (p6)

System call: well-defined entry point into kernel, to request a service

UNIX technique: for each system call, have afunction of same namein
the standard C library

— user process calls this function
— function invokes appropriate kernel service

S-49

Concurrency

Most modern developments in computer systems & applications rely on:
— communication: the conveying of info by one entity to another
— concurrency: the sharing of resources in the same time frame

note: concurrency can exist in asingle processor system aswell asin
a multiprocessor system.

Managing concurrency is difficult, as execution behaviour (e.g. relative
order of execution) is not always reproducible

More details on thisin the last 1/3 or the course

S-50

Fork (11.10)

The fork system call is used to create a duplicate of the currently
running program

process
A #1
process /
/ fork
process
A #2

The duplicate (child process) and the original (parent process) both
proceed from the point of the fork with exactly the same data

The only difference between the two processes is the fork return value,
1.e. (... see next dide)

S-51

Fork example

Int 1, pid;

| = 5;

printf(“%@d\n”, 1);
pid = fork();

1f(pid == 0)

| = 6; /* only the parent gets to here */
el se

| = 4; /* only the child gets to here */

printf(“%@d\n”, 1);

S-52

Exec (11.11)

The exec system call replaces the program being run by a process by a
different one

The new program starts executing from its beginning

process A

process A

running running

program X program Y

Variations on exec: execl () ,execv(), etc. which will be
discussed later in the course

On success, exec never returns; on failure, exec returns with value -1

S-53

Exec example

PROGRAM X

int 1I;

| = 5;

printf(“%\n”, 1);

exec(“Y");

| = 6;
printf(“%\n”, 1);
PROGRAM Y

printf(“hello”);

S-54

Processes and File Descriptors

* Filedescriptors (11.1) belong to processes, not programs
« They areaprocess link to the outside world

0)
1
process 2
A)3
2

S-55

PIDs and FDs across an exec

» Filedescriptors are maintained across exec calls:

process A
running
program X

3

process A
running
program Y

3

exec(“Y")

[u/ cul hane/file [u/ cul hane/file

S-56

PIDs and FDs across afork

» Filedescriptors are maintained across fork calls:

process A
#1
f Aoy
3
process A
#H2
3
< \ 4

[/ u/ cul hane/file

S-57

More UNIX
Concepts

Initializing UNIX

Thefirst UNIX programto beruniscalled“/ etc/init” (11.17)
It forks and then execsone “/ et ¢/ get t y” per termina

getty sets up the terminal properly, prompts for alogin name, and then
execs“/ bi n/ | ogi n”

login prompts for a password, encrypts a constant string using the

password as the key, and compares the results against the entry in the
file*/ et c/ passwd”

If they match, “/ usr/ bi n/ csh” (or whatever is specified in the
passwd file as being that user’ s shell) isexec’d

When the user exits from their shell, the process dies. Init finds out
about it (wait system call), and forks another process for that terminal

S-59

Initializing UNIX

5858

e See“top”,“ps -aux”,etc.to seewhat’srunning at any given time

 Theonly way to create a new process isto duplicate an existing
process, therefore the ancestor of ALL processesisi ni t, with pid=1

S-60

How csh runs commands

> dat e
Sun May 25 23:11:12 EDT 1997

When a command is typed csh forks and then execs the typed command:

@@

After the fork and exec, file descriptors O, 1, and 2 still refer to the
standard input, output, and error in the new process

By UNIX programmer convention, the executed program will use these
descriptors appropriately

S-61

How csh runs (cont.)

process running shell, duplicate:
PID 34 fork()
parent process running shell, child process running shell, PID 35
PID 34, waiting for child

differentiate:

exec()
Wa\;gio : c(:f)nld: child process running utility, PID 35
terminate:
v exi t ()

si gnal

< child process terminates PID 35
S-62

parent process running shell,
PID 34, awakens

Fork: PIDs and PPIDs (11.10)

Systemcal: int fork()

If f or k() succeeds, it returnsthe child PID to the parent and returns
O to the child; if it fails, it returns -1 to the parent (no child is created)

Systemcal: 1 nt getpid()

| nt get ppi d()
get pi d() returnsthe PID of the current process, and get ppi d()
returns the PID of the parent process (note: ppid of 1is 1)

example (see next dlide ...)

S-63

PID/PPID example

#i ncl ude <stdio. h>
int main(void)

{
I nt pid;
printf("ORIGA NAL: PID=% PPI D=%l\n", getpid(), getppid());
pid = fork();
if(pid!=0)
printf("PARENT: PID=%l PPI D=% chil d=%l\ n",
getpid(), getppid(), pid);
el se
printf("CHLD. PID=% PPID=%\n", getpid(), getppid());
printf("PID %l term nates.\n\n", getpid());
return(1);
}

S-64

Concurrency Example

Program a:
#!/usr/ bin/csh -f

@count =0

whi | e($count < 200)
@ count ++
echo -n "a"

end

Program b:

#! fusr/bin/csh -f
@count =0
whi | e($count < 200)
@ count ++
echo -n "Db"
end

 When run sequentially (a; b) output is as expected
* When run concurrently (a&; b&) output is interspersed, and re-running

It may produce different output

S-65

Producer/Consumer Problem

Simple example:
who | wc -|
Both the writing process (Wwho) and the reading process (Wc) of a
pipeline execute concurrently
A pipeisusualy implemented as an internal OS buffer

It isaresource that is concurrently accessed by the reader and by the
writer, so it must be managed carefully

S-66

Producer/Consumer (cont.)

consumer should be blocked when buffer is empty
producer should be blocked when buffer isfull

producer and consumer should run independently so far as the buffer
capacity and contents permit

producer and consumer should never both be updating the buffer at the
same instant (otherwise, data integrity cannot be guaranteed)

producer/consumer is a harder problem if there is more than one
consumer and/or more than one producer

S-67

Machine Language

« CPU interprets machine language programs.
1100101 11111111 11100110 00000000

1010001 00000010 01011101 00000000
1100101 00000000 11111111 00100100

» Assembly language instructions bear a one-to-one correspondence
with machine language instructions

MOVE FFFFDCO0O, DO %b =a* 2
MUL #2, DO
MOVE DO, FFFDCO4

S-68

Compilation

High Level Language (HLL) isalanguage for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

A compiler translates a high-level language into object files (machine
|language modul es).

A linker trandlates object files into a machine language program (an
executable)

Example:

— create object file“f or k. 0” from C program “f or k. c”:
gcc -c fork.c -o fork.o

— create executablefile“f or k” from object file“f or k. 0”:
gcc fork.o -o fork

S-69

Tools and Applications

Vi

cat

maore

date

gce

gdb

csh (or any other shell)

22 22222222222222

UNIX system services

UNIX kernel in C

‘ computer ‘

S-70

C and libc

C Application Programs

YYYYVYYYVYIVIYY

libc - C Interface to UNIX system services

VvV vV V VYV VY VY VY Y VY YVYY

UNIX system services
UNIX kernel inC

computer

S-71

Miscellaneous

 We haven't gone over these in any detail yet:

— | n (symboalic links)

— chnod (permissions)

— man -k forkandman 2 fork (ie: viewing specific pages)
— du (disk space usage)

— quota -v usernane and pquota -v usernane

— nogl ob

S-72

