
1

S -46

Basic UNIX
Concepts

S -47

What is UNIX good for?

• Supports many users running many programs at the same time, all
sharing (transparently) the same computer system

• Promotes information sharing

• More than just used for running software … geared towards facilitating
the job of creating new programs. So UNIX is “expert friendly”

• Got a bad reputation in business because of this aspect

S -48

History (Introduction)

• Ken Thompson working at Bell Labs in 1969 wanted a small
MULTICS for his DEC PDP-7

• He wrote UNIX which was initially written in assembler and could
handle only one user at a time

• Dennis Ritchie and Ken Thompson ported an enhanced UNIX to a
PDP-11/20 in 1970

• Ritchie ported the language BCPL to UNIX in 1970, cutting it down to
fit and calling the result “B”

• In 1973 Ritchie and Thompson rewrote UNIX in “C” and enhanced it
some more

• Since then it has been enhanced and enhanced and enhanced and …

• See Wang, page 1 for a brief discussion of UNIX variations

• POSIX (potable operating system interface) - IEEE, ANSI

S -49

Some Terminology

• Program: executable file on disk

• Process: executing instance of a program

• Process ID: unique, non-negative integer identifier (a handle by which
to refer to a process)

• UNIX kernel: a C program that implements a general interface to a
computer to be used for writing programs (p6)

• System call: well-defined entry point into kernel, to request a service

• UNIX technique: for each system call, have a function of same name in
the standard C library

– user process calls this function

– function invokes appropriate kernel service

S -50

Concurrency

• Most modern developments in computer systems & applications rely on:

– communication: the conveying of info by one entity to another

– concurrency: the sharing of resources in the same time frame

note: concurrency can exist in a single processor system as well as in
a multiprocessor system.

• Managing concurrency is difficult, as execution behaviour (e.g. relative
order of execution) is not always reproducible

• More details on this in the last 1/3 or the course

S -51

Fork (11.10)

• The fork system call is used to create a duplicate of the currently
running program

• The duplicate (child process) and the original (parent process) both
proceed from the point of the fork with exactly the same data

• The only difference between the two processes is the fork return value,
i.e. (… see next slide)

process
A

process
A #1

process
A #2

fork

2

S -52

Fork example

int i, pid;

i = 5;

printf(“%d\n”, i);

pid = fork();

if(pid == 0)

 i = 6; /* only the parent gets to here */

else

 i = 4; /* only the child gets to here */

printf(“%d\n”, i);

S -53

Exec (11.11)

• The exec system call replaces the program being run by a process by a
different one

• The new program starts executing from its beginning

• Variations on exec: execl(), execv(), etc. which will be
discussed later in the course

• On success, exec never returns; on failure, exec returns with value -1

process A

running

program X

process A

running

program Y

exec(“Y”)

S -54

Exec example
PROGRAM X

int i;

i = 5;

printf(“%d\n”, i);

exec(“Y”);

i = 6;

printf(“%d\n”, i);

PROGRAM Y

printf(“hello”);

S -55

Processes and File Descriptors

• File descriptors (11.1) belong to processes, not programs

• They are a process’ link to the outside world

process
A

0
1

2

3

4
5

S -56

PIDs and FDs across an exec

• File descriptors are maintained across exec calls:

process A
running

program X

3

process A
running

program Y

3

exec(“Y”)

/u/culhane/file /u/culhane/file

S -57

PIDs and FDs across a fork

• File descriptors are maintained across fork calls:

process A
#2

3

process A
#1

3

/u/culhane/file

fork

3

S -58

More UNIX
Concepts

S -59

Initializing UNIX

• The first UNIX program to be run is called “/etc/init” (11.17)

• It forks and then execs one “/etc/getty” per terminal

• getty sets up the terminal properly, prompts for a login name, and then
execs “/bin/login”

• login prompts for a password, encrypts a constant string using the
password as the key, and compares the results against the entry in the
file “/etc/passwd”

• If they match, “/usr/bin/csh” (or whatever is specified in the
passwd file as being that user’s shell) is exec’d

• When the user exits from their shell, the process dies. Init finds out
about it (wait system call), and forks another process for that terminal

S -60

Initializing UNIX

• See “top”, “ps -aux”, etc. to see what’s running at any given time

• The only way to create a new process is to duplicate an existing
process, therefore the ancestor of ALL processes is init, with pid=1

init init

init

init

getty

init

login

init

csh

S -61

How csh runs commands
> date

Sun May 25 23:11:12 EDT 1997

• When a command is typed csh forks and then execs the typed command:

• After the fork and exec, file descriptors 0, 1, and 2 still refer to the
standard input, output, and error in the new process

• By UNIX programmer convention, the executed program will use these
descriptors appropriately

csh csh

csh

csh

date

csh

S -62

duplicate:
fork()

How csh runs (cont.)

parent process running shell,
PID 34, waiting for child

child process running shell, PID 35

parent process running shell,
PID 34, awakens

wait for child:
wait()

process running shell,
PID 34

child process running utility, PID 35

child process terminates PID 35

terminate:
exit()

signal

differentiate:
exec()

S -63

Fork: PIDs and PPIDs (11.10)

• System call: int fork()

• If fork() succeeds, it returns the child PID to the parent and returns
0 to the child; if it fails, it returns -1 to the parent (no child is created)

• System call: int getpid()

 int getppid()

• getpid() returns the PID of the current process, and getppid()
returns the PID of the parent process (note: ppid of 1 is 1)

• example (see next slide …)

4

S -64

PID/PPID example
#include <stdio.h>

int main(void)

{

 int pid;

 printf("ORIGINAL: PID=%d PPID=%d\n", getpid(), getppid());

 pid = fork();

 if(pid != 0)

 printf("PARENT: PID=%d PPID=%d child=%d\n",

 getpid(), getppid(), pid);

 else

 printf("CHILD: PID=%d PPID=%d\n", getpid(), getppid());

 printf("PID %d terminates.\n\n", getpid());

 return(1);

}

S -65

Concurrency Example

Program a: Program b:
#!/usr/bin/csh -f #!/usr/bin/csh -f

@ count = 0 @ count = 0

while($count < 200) while($count < 200)

 @ count++ @ count++

 echo -n "a" echo -n "b"

end end

• When run sequentially (a;b) output is as expected

• When run concurrently (a&;b&) output is interspersed, and re-running
it may produce different output

S -66

Producer/Consumer Problem

• Simple example:
who | wc -l

• Both the writing process (who) and the reading process (wc) of a
pipeline execute concurrently

• A pipe is usually implemented as an internal OS buffer

• It is a resource that is concurrently accessed by the reader and by the
writer, so it must be managed carefully

S -67

Producer/Consumer (cont.)

• consumer should be blocked when buffer is empty

• producer should be blocked when buffer is full

• producer and consumer should run independently so far as the buffer
capacity and contents permit

• producer and consumer should never both be updating the buffer at the
same instant (otherwise, data integrity cannot be guaranteed)

• producer/consumer is a harder problem if there is more than one
consumer and/or more than one producer

S -68

Machine Language

• CPU interprets machine language programs:
1100101 11111111 11100110 00000000

1010001 00000010 01011101 00000000

1100101 00000000 11111111 00100100

• Assembly language instructions bear a one-to-one correspondence
with machine language instructions

MOVE FFFFDC00, D0 % b = a * 2

MUL #2, D0

MOVE D0, FFFDC04

S -69

Compilation

• High Level Language (HLL) is a language for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

• A compiler translates a high-level language into object files (machine
language modules).

• A linker translates object files into a machine language program (an
executable)

• Example:

– create object file “fork.o” from C program “fork.c”:

gcc -c fork.c -o fork.o

– create executable file “fork” from object file “fork.o”:

gcc fork.o -o fork

5

S -70

UNIX system services

UNIX kernel in C

Tools and Applications

computer

csh (or any other shell)

 vi cat more date gcc gdb …

S -71

UNIX system services

UNIX kernel in C

C and libc

computer

C Application Programs

libc - C Interface to UNIX system services

S -72

Miscellaneous

• We haven’t gone over these in any detail yet:

– ln (symbolic links)

– chmod (permissions)

– man -k fork and man 2 fork (ie: viewing specific pages)

– du (disk space usage)

– quota -v username and pquota -v username

– noglob

– … any others ?????

