Basic UNIX
Concepts

What is UNIX good for?

Supports many users running many programs at the same time, all
sharing (transparently) the same computer system

Promotes information sharing

More than just used for running software ... geared towards facilitating
the job of creating new programs. So UNIX is“expert friendly”

Got abad reputation in business because of this aspect

History (introduction)

Ken Thompson working at Bell Labsin 1969 wanted a small
MULTICS for his DEC PDP-7

He wrote UNIX which was initially written in assembler and could
handle only one user at atime

Dennis Ritchie and Ken Thompson ported an enhanced UNIX to a
PDP-11/20in 1970

Ritchie ported the language BCPL to UNIX in 1970, cutting it down to
fit and calling the result “B”

In 1973 Ritchie and Thompson rewrote UNIX in “C" and enhanced it
some more

Since then it has been enhanced and enhanced and enhanced and ...
See Wang, page 1 for abrief discussion of UNIX variations

POSIX (potable operating system interface) - IEEE, ANSI

Some Terminology

Program: executable file on disk
Process: executing instance of a program
Process ID: unique, non-negative integer identifier (a handle by which
to refer to a process)

UNIX kernel: aC program that implements a general interfaceto a
computer to be used for writing programs (p6)
System call: well-defined entry point into kernel, to request a service
UNIX technique: for each system call, have a function of same namein
the standard C library

— user process calls this function

— function invokes appropriate kernel service

Concurrency

Most modern developmentsin computer systems & applications rely on:
— communication: the conveying of info by one entity to another
— concurrency: the sharing of resources in the same time frame
note: concurrency can exist in asingle processor system aswell asin
amultiprocessor system.

Managing concurrency is difficult, as execution behaviour (e.g. relative
order of execution) is not always reproducible

More details on thisin the last 1/3 or the course

Fork (11.10)

The fork system call is used to create a duplicate of the currently
running program

The duplicate (child process) and the original (parent process) both
proceed from the point of the fork with exactly the same data

The only difference between the two processes is the fork return value,
i.e. (... seenext slide)

Fork example

int i, pid;

i =65;

printf(“%\n", i);
pid = fork();

if(pid==0)
i =6; /* only the parent gets to here */

Exec (11.11)

« Theexec system call replaces the program being run by a process by a
different one

« The new program starts executing from its beginning

process A

process A

running running

program X program Y

« Variationson exec: execl (), execv(), etc. which will be
discussed later in the course

« On success, exec never returns; on failure, exec returns with value -1

5-53

el se
i =4; /* only the child gets to here */
printf(“%\n", i);
S-52
PROGRAM X
int i;
i =65;
printf(“%d\n", i);
exec(“Y");
i =6;
printf(“%d\n", i);
PROGRAM Y
printf(“hello”);
S-54

Processes and File Descriptors

« Filedescriptors (11.1) belong to processes, not programs
* They areaprocess’ link to the outside world

1
process |2
A 3
2
5

PIDs and FDs across an exec

« File descriptors are maintained across exec calls:

process A
running
program X
3

process A
running
program Y
3

lulcul hane/file lulcul hane/file

PIDs and FDs across a fork

« File descriptors are maintained across fork calls:

process A

fV

lulcul hane/file

More UNIX
Concepts

Initializing UNIX

« Thefirst UNIX programto beruniscalled“/ et c/i ni t” (11.17)

« Itforksandthen execsone“/ et c/ get ty” per terminal

« getty sets up the terminal properly, prompts for alogin name, and then
execs“/ bin/ | ogi n”

« login prompts for a password, encrypts a constant string using the

password as the key, and compares the results against the entry in the
file*/ et ¢/ passwd”

« If they match, “/ usr/ bi n/ csh” (or whatever is specified in the
passwd file as being that user’s shell) is exec'd

* When the user exits from their shell, the process dies. Init finds out
about it (wait system call), and forks another process for that terminal

Initializing UNIX

©8222-

* See“top”,“ps -aux”,etc.to seewhat’srunning at any given time

« Theonly way to create a new processis to duplicate an existing
process, therefore the ancestor of ALL processesisi ni t, with pid=1

How csh runs commands

> date
Sun May 25 23:11:12 EDT 1997

« When acommand is typed csh forks and then execs the typed command:

« After thefork and exec, file descriptors O, 1, and 2 still refer to the
standard input, output, and error in the new process

« By UNIX programmer convention, the executed program will use these
descriptors appropriately

How csh runs (cont.)

process running shell,
PID 34
parent process running shell, child process running shell, PID 35
PID 34, waiting for child
differentiate:
exec()
child process running utility, PID 35

l
4—— child process terminates PID 35

5-62

parent process running shell,
PID 34, avakens

Fork: PIDs and PPIDs(11.10)

« Systemcal: int fork()
« Iffork() succeeds, it returnsthe child PID to the parent and returns
0to the child; if it fails, it returns -1 to the parent (no child is created)

« Systemcal: int getpid()
int getppid()
« get pi d() returnsthe PID of the current process, and get ppi d()
returns the PID of the parent process (note: ppid of 1is 1)
« example (seenext dide ...)

PID/PPID example

#i ncl ude <stdio. h>
int min(void)
{
int pid;
printf("ORIG NAL: PID=% PPID=%\n", getpid(), getppid());
pid = fork();
if(pid!=0)
printf("PARENT: PID=% PPl D=% chil d=%i\n",
getpid(), getppid(), pid);
el se
printf("CHLD: PID=% PPID=%l\n", getpid(), getppid()):

printf("PID %l termnates.\n\n", getpid());
return(1);

S-64

Concurrency Example

Program a: Program b:

#!'/usr/bin/csh -f
@count =0 @count = 0
whi | e($count < 200)

#!/usr/bin/csh -f

whi | e($count < 200)
@ count ++ @ count ++
echo -n "a echo -n "b"

end end

When run sequentially (a; b) output is as expected
When run concurrently (a&; b&) output is interspersed, and re-running
it may produce different output

Producer/Consumer Problem

« Simpleexample:
who | we -1
« Both the writing process (who) and the reading process (wc) of a
pipeline execute concurrently
« A pipeisusualy implemented as an internal OS buffer
« Itisaresourcethat is concurrently accessed by the reader and by the
writer, so it must be managed carefully

Producer/Consumer (cont.)

consumer should be blocked when buffer is empty

producer should be blocked when buffer is full

producer and consumer should run independently so far as the buffer
capacity and contents permit

producer and consumer should never both be updating the buffer at the
same instant (otherwise, dataintegrity cannot be guaranteed)

producer/consumer is a harder problem if there is more than one
consumer and/or more than one producer

Machine Language

« CPU interprets machine language programs:
1100101 11111111 11100110 00000000
1010001 00000010 01011101 00000000
1100101 00000000 11111111 00100100

« Assembly language instructions bear a one-to-one correspondence

with machine language instructions

MOVE FFFFDCO0, DO %b=a* 2
ML #2, DO
MOVE DO, FFFDCO4

Compilation

High Level Language (HLL) is alanguage for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

A compiler translates a high-level language into object files (machine
language modules).

A linker translates object filesinto a machine language program (an
executable)

Example:

— create object file“f or k. 0” from C program “f or k. ¢”:
gcc -c fork.c -o fork.o

— create executable file“f or k” from object file“f or k. 0”:
gcc fork.o -o fork

Tools and Applications

\ | cat |more| date | gee | gdb |

csh (or any other shell)

PAIRIIIR IR ey

UNIX system services

UNIX kernel inC

I computer I

Candlibc

C Application Programs

iy biddbiddd

| libc - C Interface to UNIX system services

UNIX system services

UNIX kernel inC

I computer I

Miscellaneous

We haven't gone over these in any detail yet:

I'n (symbolic links)

chnod (permissions)

man -k forkandman 2 fork (ie: viewing specific pages)
du (disk space usage)

quota -v usernane and pquota -v usernane
nogl ob

