Project Management

Dependencies

Corver 2
T~

M akefiles (p.430)

OBJS = I server.o xserver.o
CC = gcc

CFLAGS = -g

.C.O:

$(CC) $(CFLAGS) -c $<

| Server: $(0BJS)
$(CCO $(CFLAGS) $(0OBIS) -0 3@

| server.o: include.h globals.h proto.h
xserver.o: include.h globals.h proto.h
cl ean:

rm-f *.o0 | Server

S-207

Multiply-defined globals

|server.c:

#i ncl ude "i ncl ude. h"

void main(void)

{
X _Server Pi d++;
PrintPid();

}

include.h:

#i ncl ude <stdi o. h>
#i nclude "proto. h"
#i ncl ude "gl obal s. h"

roto.h:

XServer.C.

void PrintPid();

#i ncl ude "1 ncl ude. h"
void PrintPid()

{

printf("X ServerPid: %\ n",
X ServerPid);

globals.h:

Int X ServerPid = 14,

S-208

Two Solutions

for initialized globals. for uninitialized globals:
globals.h: globals.h:
#ifdef _NMAIN #ifdef _MAIN
Int X ServerPid = 14; #def i ne EXTERN
#el se #el se
extern X ServerPi d; #defi ne EXTERN extern
#endi f #endi f
iserver.c: FfTERP X;S?ryfrPL?;
#define MAIN set in Init()

#i ncl ude "i ncl ude. h"

S-209

Miscellanea

S-210

gzl p,conpress (p.111)

Usage: gzip [fil enanme] : compress specified filename
gunzi p [fil enane] : uncompress specified filename

Examples:
gzip filel createsfilel.gz
gunzip <file2.gz | nore leaves file2.gz intact

cat file3 | gzip > newkrile.gz leavesfile3intact

conpr ess behaveslikegzi p, using adifferent (less efficient)
compression algorithm is used (resulting files have . Z extension).

Similarly, unconpr ess behaveslikegunzi p

S-211

tar (5.11)

Traditionally, tar (short for Tape ARchive) was used for backups to
tape drives

It's also useful to create archive files on disk.

Example: creating an archive of adirectory structure:
tar fcvp dirl.tar dirl

Example: uncompressing and extracting atar file:

gunzip < dir2.tar.gz | tar fxvp -
Example: copying adirectory structure:

tar fcvp - dirl | (cd newoc; tar fxvp -)
Advantage over “cp -r p”: preserves symbolic links

S-212

ni ce, nohup

ni ce (csh built-in) sets the priority level of acommand. The higher
the priority number, the slower it will run.

Usagee nice [+ n| - n] command
Example:
nice +20 emacs &
nice -20 I nportantJob onlyroot can give negative value

nohup (csh built-in) makes a process immune to hangup conditions
Usage: nohup conmmand
Example:
nohup bigJob &
iIn ~/ . 1ogout: /usr/bin/kill -HUP -1 >& /dev/null

S-213

Named pipes: mknod()

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#include <fcntl. h>
int main() {
unl i nk(“nanmedPi pe”);
nmknod(“nanmedPi pe”, S IFIFQ 0);
chnod(“nanedPi pe”, 0600);
if(fork() ==0) {
int fd = open(“nanedPi pe”, O WRONLY);
dup2(fd, fileno(stdout)); close(fd);
execl p("ruptinme", "ruptinme", (char *) 0);
} else {
int fd = open(“nanedPi pe”, O RDONLY);
dup2(fd, fileno(stdin)); close(fd);
execl p("sort", "sort", "-r", (char *) 0);

S-214

vfork()

Thetypical f or k() /exec() sequenceisinefficient because
fork() createsacopy of the data, heap, and stack area of the original
process, which is then immediately discarded when exec() iscalled.

vf or k() isintended to create a new process when the purpose of the
new processistoexec() anew program. vf or k() hasthe same
calling sequence and the same return valuesasf or k() .

vf or k() createsthe new process, just likef or k() , without fully

copying the address space of the parent into the child, since the child
won't reference that address space -- the child just callsexec() right
after thevf or k().

Another difference between vf or k() andf or k() isthat vf or k()
guarantees that the child runs first, until the child callsexec() or
exit().

S-215

system() (11.7)

It is sometimes convenient to execute a command string from within a
program.

For example, to put atime and date stamp into a certain file, one could:

— usetine(),andcti ne() toget and format thetime, then open
afile for writing and write the resulting string.

— use systen(“date > file”); (muchsmpler)

syst em() istypicaly implemented by calling f or k() , exec(),
andwai t pi d()

S-216

| 1 Nt

| i nt isauseful utility that checks programs more thoroughly that
gcc or other compilers

 Usage:
lint filel [file2]
% cat nain.c %lint nmain.c
#1 ncl ude <stdi o. h> vari abl e unused i n function:
voi d mai n() (5) I in main
{
int i1; function returns val ue
printf("Hello\n"); which is always ignored:
} printf

S-217

