
1

S -205

Project Management

S -206

Dependencies

include.h

proto.h

globals.h

xserver.c

iserver.c

.

.

.
<stdio.h>

.

.

S -207

Makefiles (p.430)
OBJS = iserver.o xserver.o

CC = gcc

CFLAGS = -g

.c.o:

 $(CC) $(CFLAGS) -c $<

IServer: $(OBJS)

 $(CC) $(CFLAGS) $(OBJS) -o $@

iserver.o: include.h globals.h proto.h

xserver.o: include.h globals.h proto.h

clean:

 rm -f *.o IServer

S -208

Multiply-defined globals

#include <stdio.h>
#include "proto.h"
#include "globals.h"

#include "include.h"

void main(void)
{
 X_ServerPid++;
 PrintPid();
}

#include "include.h"
void PrintPid()
{
 printf("X_ServerPid:%d\n",
 X_ServerPid);
}

void PrintPid();

int X_ServerPid = 14;

iserver.c:

xserver.c:

include.h:

proto.h:

globals.h:

S -209

Two Solutions

#ifdef _MAIN
 int X_ServerPid = 14;
#else
 extern X_ServerPid;
#endif

globals.h:
#ifdef _MAIN
 #define EXTERN
#else
 #define EXTERN extern
#endif

EXTERN X_ServerPid;
/* set in Init()*/

globals.h:

for initialized globals: for uninitialized globals:

#define _MAIN
#include "include.h"

iserver.c:

S -210

Miscellanea

2

S -211

gzip, compress (p.111)

• Usage: gzip [filename]: compress specified filename

 gunzip [filename]: uncompress specified filename

• Examples:
gzip file1 creates file1.gz

gunzip <file2.gz | more leaves file2.gz intact

cat file3 | gzip > newFile.gz leaves file3 intact

• compress behaves like gzip, using a different (less efficient)
compression algorithm is used (resulting files have .Z extension).

• Similarly, uncompress behaves like gunzip

S -212

tar (5.11)

• Traditionally, tar (short for Tape ARchive) was used for backups to
tape drives

• It’s also useful to create archive files on disk.

• Example: creating an archive of a directory structure:

tar fcvp dir1.tar dir1

• Example: uncompressing and extracting a tar file:
gunzip < dir2.tar.gz | tar fxvp -

• Example: copying a directory structure:

tar fcvp - dir1 | (cd newloc; tar fxvp -)

• Advantage over “cp -rp”: preserves symbolic links

S -213

nice, nohup

• nice (csh built-in) sets the priority level of a command. The higher
the priority number, the slower it will run.

• Usage: nice [+ n | - n] command

• Example:
nice +20 emacs &

nice -20 importantJob only root can give negative value

• nohup (csh built-in) makes a process immune to hangup conditions

• Usage: nohup command

• Example:

nohup bigJob &

• in ~/.logout: /usr/bin/kill -HUP -1 >& /dev/null

S -214

Named pipes: mknod()
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int main() {

 unlink(“namedPipe”);

 mknod(“namedPipe”, S_IFIFO, 0);

 chmod(“namedPipe”, 0600);

 if(fork() == 0) {

 int fd = open(“namedPipe”, O_WRONLY);

 dup2(fd, fileno(stdout)); close(fd);

 execlp("ruptime", "ruptime", (char *) 0);

 } else {

 int fd = open(“namedPipe”, O_RDONLY);

 dup2(fd, fileno(stdin)); close(fd);

 execlp("sort", "sort", "-r", (char *) 0);

 }

}

S -215

vfork()

• The typical fork()/exec() sequence is inefficient because
fork() creates a copy of the data, heap, and stack area of the original
process, which is then immediately discarded when exec() is called.

• vfork()is intended to create a new process when the purpose of the
new process is to exec() a new program. vfork() has the same
calling sequence and the same return values as fork().

• vfork() creates the new process, just like fork(), without fully
copying the address space of the parent into the child, since the child
won’t reference that address space -- the child just calls exec() right
after the vfork().

• Another difference between vfork() and fork() is that vfork()
guarantees that the child runs first, until the child calls exec() or
exit().

S -216

system() (11.7)

• It is sometimes convenient to execute a command string from within a
program.

• For example, to put a time and date stamp into a certain file, one could:
– use time(), and ctime() to get and format the time, then open

a file for writing and write the resulting string.

– use system(“date > file”); (much simpler)

• system() is typically implemented by calling fork(), exec(),
and waitpid()

3

S -217

lint

• lint is a useful utility that checks programs more thoroughly that
gcc or other compilers

• Usage:

lint file1 [file2] ...

% cat main.c

#include <stdio.h>
void main()
{
 int i;
 printf("Hello\n");
}

% lint main.c

variable unused in function:
 (5) i in main

function returns value
which is always ignored:
 printf

