Project Management

Dependencies

G D
ii

=

S$-206
Multiply-defined globals
iserver.c:
#i ncl ude "include. h" includeh:
void main(void) #i ncl ude <stdio. h>
#include "proto. h"
X_Ser ver Pi d++; #include "gl obal s. h"
PrintPid();

} roto.h:
XSErver.c: void PrintPid();
nclude "include. h"

XOi d PrintPid() il?ﬁaji(h:Server Pid = 14;

printf("X ServerPid: %\n",
X_ServerPid);

5-208

S-205
oBJS = iserver.o xserver.o
cc = gcc
CFLAGS = -g
.c.o:
$(CC) $(CFLAGS) -c $<
I Server: $(0BJS)
$(CC) $(CFLAGS) $(0BIS) -0 $@
iserver.o: include.h globals.h proto.h
xserver.o: include.h globals.h proto.h
cl ean:
rm-f *.o |Server
S§-207
for initialized globals: for uninitialized globals:
lobals.h: lobals.h:
fdef NMAIN # fdef NMAIN
int X _ServerPid = 14; #defi ne EXTERN
#el se #el se
extern X_ServerPid; #defi ne EXTERN extern
#endi f #endi f
iserver.c: /ETTER:\‘ _XfSIery‘erPild;
#define MAIN set in Init()
#i ncl ude "include. h"
S$-209

Miscellanea

s-210

gzi p,conpress (p.111)

Usage: gzip [fil enane] : compress specified filename
gunzi p [fil ename] : uncompress specified filename

Examples:
gzip filel createsfilel.gz
gunzip <file2.gz | nore leaves file2.gz intact

cat file3 | gzip > newFile.gz leavesfile3intact

conpr ess behaveslike gzi p, using adifferent (less efficient)
compression algorithm is used (resulting files have . Z extension).

Similarly, unconpr ess behaveslikegunzi p

s-211

tar (5.11)

« Traditionally, tar (short for Tape ARchive) was used for backups to
tape drives
« It'salso useful to create archive files on disk.

« Example: creating an archive of adirectory structure:
tar fcvp dirl.tar dirl
« Example: uncompressing and extracting atar file:
gunzip < dir2.tar.gz | tar fxvp -
« Example: copying adirectory structure:
tar fecvp - dirl | (cd newoc; tar fxvp -)
« Advantageover “cp -rp": preserves symbolic links

ni ce, nohup

ni ce (csh built-in) setsthe priority level of acommand. The higher
the priority number, the slower it will run.
Usage: nice [+ n| - n] command
Example:
nice +20 emacs &
ni ce -20 inportantJob onlyroot can give negative value

nohup (csh built-in) makes a process immune to hangup conditions
Usage: nohup command
Example:
nohup bigJob &
in ~/.logout: /usr/bin/kill -HUP -1 >& /dev/null

s-213

S§-212
Named pipes. mknod()
#include <stdio. h>
#include <sys/types. h>
#include <sys/stat.h>
#include <fcntl. h>
int main() {
unli nk(“namedPi pe”);
mknod(“namedPipe’, S_IFIFQ 0);
chnod(“namedPi pe”, 0600);
if(fork() ==0) {
int fd = open(“namedPipe’, O WRONLY);
dup2(fd, fileno(stdout)); close(fd);
execl p("ruptine”, "ruptime", (char *) 0);
} else {
int fd = open(“namedPipe’, O RDONLY);
dup2(fd, fileno(stdin)); close(fd);
execl p("sort", "sort", "-r", (char *) 0);
}
}
S-214

vfork()

Thetypical f or k() /exec() sequenceisinefficient because
fork() createsacopy of the data, heap, and stack area of the original
process, which is then immediately discarded when exec() iscalled.
vfor k() isintended to create a new process when the purpose of the
new processisto exec() anew program. vfor k() hasthe same
calling sequence and the same return values asf or k() .

vfork() createsthe new process, just likef or k() , without fully
copying the address space of the parent into the child, since the child
won't reference that address space -- the child just callsexec() right
after thevf ork().

Another difference between vf or k() andf or k() isthat vfork()
guarantees that the child runs first, until the child callsexec() or
exit().

s-215

system() (11.7)

« Itis sometimes convenient to execute acommand string from within a
program.

« For example, to put atime and date stamp into a certain file, one could:
— usetine(),andctime() togetandformat thetime, then open
afile for writing and write the resulting string.
— use systen(“date > file”); (muchsimpler)

« systen() istypically implemented by calling f or k() , exec(),
andwai t pi d()

5-216

[i nt

I'i nt isauseful utility that checks programs more thoroughly that
gcc or other compilers

Usage:
lint filel [file2]
% cat main.c % lint main.c
#i ncl ude <stdio. h> variable unused in function:
voi d main() (5) i inmin
{
int i; function returns val ue
printf("Hello\n"); which is always ignored:
} printf

s-217

