Posix Threads

Thread Concepts

Threads are "lightweight processes’
— 10to 100 times faster than f or k()
Threads share:

— process instructions, most data, file descriptors, signal
handlers/dispositions, current working directory, user/group Ids
Each thread has its own:

— thread ID, set of registers (incl. Program counter and stack
pointer), stack (local vars, return addresses), er r no, signal mask,

priority
Posix threads will (we think) be the new UNIX thread standard

S-187

Creating a PThread

#i ncl ude <pthread. h>

I nt pthread create(pthread t *tid, pthread attr _t *attr,
void *(*func)(void *), void *arg)

t i d isunique within a process, returned by function
attr

— setspriority, initial stack size, daemon status

— can specify as NULL
func

— function to call to start thread

— acceptsonevoi d * argument, returnsonevoi d *
ar g isthe argument to passto f unc

S-188

Creating a Pthread [cont'd]

e pthread create() returnsO if successful, a+ve error code if not
 doesnot set er r no, but returns compatible codes
e canusestrerror() toprint error messages

Thread Termination

#i ncl ude <pt hread. h>
Int pthread join(pthread t tid, void **status)
e tid

— thethread ID of the thread to wait for

— cannot walit for any thread (cf. wai t ())

S-189

Thread Termination [cont'd]

e status,if not NULL, returnsthe void * returned by the thread when
It terminates

» athread can terminate by
— returning fromf unc()
— themai n() function exiting
— pthread_exit()
#i ncl ude <pt hread. h>
void pthread exit(void *status);
e asecond way to exit, returns status explicitly

e st at us must not point to an object local to thread, as these disappear
when the thread terminates

S-190

"Detaching” Threads

#i ncl ude <pt hread. h>
| nt pthread detach(pthread t tid);
» threads are either joinable or detachable

e |f athread is detached, itstermination cannot be tracked with
pt hread_j oi n() - it becomes a daemon thread

#i ncl ude <pt hread. h>
pthread t pthread self(void);

» returnsthethread ID of the thread which calls it
 oftenseept hread _detach(pthread self())

S-191

Passing Arguments to Threads

pthread t thread |D
Int fd, result ;

result = pthread create(& hread | D,
(pthread attr _t *)NULL, nyThreadFcn, (void *)& d);
1 f (result !'= 0)

printf("Error: 9%\n", strerror(result));

e We can pass any variable (including a structure or array) to our thread
function; assumes thread function knows what typeit is

S-192

Thread-Safe Functions

Not all functions can be called fromthreads (e.g. strtok())
— many use global/static variables

— new versions of UNIX have thread-safe replacements, like
strtok r()

Safe:
—ctime_r(), gntine r(), localtinme r(),
rand r(), strtok r()

Not Safe:

—ctime(), gnine(), localtinme(), rand(),
strtok(), gethost XXX(), 1net _toa()

could use semaphores to protect access

S-193

PThread Semaphores

#i ncl ude <pt hread. h>

Int pthread mutex i nit(pthread nmutex t *nane,
const pthread nmutexattr t *attr);

I nt pthread nmutex destroy(pthread nutex t *name),;

I nt pthread nmutex | ock(pthread nutex t *nane),;

I nt pthread mutex tryl ock(pthread nutex t *name),;

| nt pt hread mut ex _unl ock(pthread nutex t *name),;

» pthread semaphores are easier to use than senget () and senop()
o all mutexes must be global
» only the thread that locks a mutex can unlock it

S-194

PThread Semaphores [cont'd]

pthread nmutex t nyMutex ;
| nt status ;

status = pthread nmutex_init(&ryMitex, NULL) ;
| f (status !'= 0)
printf("Error: %\n", strerror(status));
pt hr ead _mut ex | ock(&y Mut ex) ;
/* critical section here */
pt hr ead_nut ex_unl ock(&y Mt ex) ;
status = pthread nutex destroy(&Mt ex);
| f (status !'= 0)
printf("Error: %\n", strerror(status));

S-195

Concurrency Concepts

S-196

Non-determinism

* A processisdeterministic when it always produces the same result
when presented with the same data; otherwise aprocessis called

non-deterministic

\
/
e

» Evaluation proceeds non-deterministically in one of two ways,
producing an output of 10 or 100

» Race conditions lead to non-determinism, and are generally undesirable

S-197

Deadlocks

* A concurrent program isin deadlock if al processes are waiting for
some event that will never occur

o Typical deadlock pattern:
Process 1 is holding resource X, waiting for Y
Process 2 is holding resource Y, waiting for X

Process 1 will not get Y until Process 2 releases it

Process 2 will not release Y until it gets X,
which Process 1 is holding, waiting for ...

S-198

Dining Philosophers

N philosophers are seated
In acircle, one chopstick

between each adjacent pair

Each philosopher needs two
chopsticks to eat, aleft
chopstick and aright
chopstick

A typical philosopher
process alternates between
eating and thinking

(see next dlide)

A A

S-199

Philosopher Process

loop
<get one chopstick>
<get other chopstick>

<eat>

<release one chopstick>
<release other chopstick>

<think>

endloop

S-200

Deadlock Example

« For N=2, call philosophers P1 and P2, and chopsticks C1 and C2
» Deadlocking sequence:

P1 requests; gets C1

P2 requests; gets C2

P1 requests; WAITS for C2

P2 requests; WAITS for C1

** DEADLOCK **

» Can avoid deadlock if the philosopher processes request both chopsticks
at once, and then the get both or wait until both are available

S-201

Comments on Deadlock

In practice, deadlocks can arise when waiting for some reusable
resources. For example, an operating system may be handling severd
executing jobs, none of which has enough room to finish (and free up
memory for the others)

Operating systems may detect/avoid deadlocks by:
— checking continuously on requests for resources
— refusing to allocate resources if allocation would lead to a deadlock
— terminating a process that is responsible for deadlock

One can have a process that sits and watches, and can break a deadlock
If necessary. This process may be invoked:

— on atimed interrupt basis
— when a process wants to queue for aresource
— when deadlock is suspected (i.e.. CPU utilization has dropped to 0)

S-202

|ndefinite Postponement

| ndefinite postponement occurs when a process is blocked waiting for
an even that can, but will not occur in some future execution seguence

This may arise because other processes are “ganging up” on a process
to “starve” it

During indefinite postponement, the overall system does not grind to a
halt, but treats some of its processes unfairly

Indefinite postponement can be avoided by having priority queues
which serve concurrent processes on afirst-come, first-served basis

UNIX semaphores do this, using a FIFO (first-in, first-out) queue for
all requests

S-203

