Posix Threads

5-186

Thread Concepts

« Threads are "lightweight processes"
— 10to 100 times faster than f or k(')
¢ Threads share:

— processinstructions, most data, file descriptors, signal

handlers/dispositions, current working directory, user/group Ids
« Each thread hasits own:

— thread ID, set of registers (incl. Program counter and stack
pointer), stack (local vars, return addresses), er r no, signa mask,
priority

« Posix threads will (we think) be the new UNIX thread standard

s-187

Creating a PThread

#i ncl ude <pthread. h>
int pthread_create(pthread_t *tid, pthread_attr_t *attr,
void *(*func)(void *), void *arg)
« tidisuniquewithin aprocess, returned by function
e attr
— setspriority, initial stack size, daemon status
— can specify as NULL
« func
— function to call to start thread
— acceptsonevoi d * argument, returnsonevoi d *
« arg istheargument to passto f unc

s-188

Creating a Pthread [cont'd]

« pthread_create() returnsOif successful, a+ve error codeif not
« doesnot set er r no, but returns compatible codes
« canusestrerror() toprint error messages

Thread Termination

#i ncl ude <pthread. h>
int pthread_join(pthread_t tid, void **status)
o tid

— thethread ID of the thread to wait for

— cannot wait for any thread (cf. wai t ())

S-189

Thread Termination [cont'd]

« status,if not NULL, returnsthe void * returned by the thread when
it terminates
« athread can terminate by
— returning from f unc()
— themai n() function exiting
— pthread_exit()
#i ncl ude <pthread. h>
voi d pthread_exit(void *status);
« asecond way to exit, returns status explicitly

« stat us must not point to an object local to thread, as these disappear
when the thread terminates

5-190

"Detaching" Threads

#i ncl ude <pthread. h>
int pthread_detach(pthread_t tid);
« threads are either joinable or detachable

« if athread is detached, its termination cannot be tracked with
pt hread_j oi n() - it becomes a daemon thread

#i ncl ude <pthread. h>

pthread_t pthread_sel f(void);

« returnsthethread ID of the thread which calls it

« oftenseept hread_det ach(pt hread_sel f())

s-191

Passing Arguments to Threads

pthread_t thread_ID;
int fd, result

result = pthread_create(&t hread_ID,
(pthread_attr_t *)NULL, nyThreadFcn, (void *)&fd);
if (result !'=0)

printf("Error: %\n", strerror(result));

« wecan pass any variable (including a structure or array) to our thread
function; assumes thread function knows what typeit is

s-192

Thread-Safe Functions

« Not all functions can be called from threads (e.g. strtok())
— many use global/static variables

— new versions of UNIX have thread-safe replacements, like
strtok_r()

« Safe:
—ctime_r(), gntime_r(), localtime_r(),
rand_r (), strtok_r()
* Not Safe:
—ctime(), gntine(), localtime(), rand(),
strtok(), gethostXXX(), inet_toa()

« could use semaphores to protect access

5-193

PThread Semaphores

#i ncl ude <pthread. h>

int pthread_nutex_init(pthread_nutex_t *name,
const pthread_nutexattr_t *attr);

int pthread_nutex_destroy(pthread_mutex_t *nane);

int pthread_nutex_| ock(pthread_nutex_t *nane);

int pthread_rmutex_tryl ock(pthread_mutex_t *nane);

int pthread_nutex_unl ock(pthread_nutex_t *nane);

« pthread semaphores are easier to use than senget () and senop()
« al mutexes must be global
« only the thread that locks a mutex can unlock it

PThread Semaphores [cont'd]

pthread_nutex_t nyMitex ;
int status ;

status = pthread_mutex_init(&myMtex, NULL)
if (status !'= 0)
printf("Error: %\n", strerror(status));

pt hr ead_nut ex_| ock(&ryMit ex) ;
/* critical section here */
pt hr ead_nut ex_unl ock(&yMut ex) ;
status = pthread_nutex_destroy(&ryMitex);
if (status != 0)

printf("Error: %\n", strerror(status));

5-195

Concurrency Concepts

5-196

Non-determinism

« A processis deterministic when it always produces the same result
when presented with the same data; otherwise a process is called

non-deterministic
Corint D
/V
T

Evaluation proceeds non-deterministically in one of two ways,
producing an output of 10 or 100

Race conditions |ead to non-determinism, and are generally undesirable

s-197

Deadlocks

A concurrent program is in deadlock if all processes are waiting for
some event that will never occur
Typical deadlock pattern:

Process 1 is holding resource X, waiting for Y

Process 2 is holding resource Y, waiting for X

Process 1 will not get Y until Process 2 releases it

Process 2 will not release Y until it gets X,
which Process 1 is holding, waiting for ...

s-198

Dining Philosophers

N philosophers are seated
inacircle, one chopstick

between each adjacent pair
Each philosopher needs two
chopsticks to eat, aleft
chopstick and aright
chopstick

A typical philosopher
process alternates between

eating and thinking
(see next slide)

5-199

Philosopher Process

loop
<get one chopstick>
<get other chopstick>

<eat>

<release one chopstick>
<release other chopstick>

<think>

endloop

5-200

Deadlock Example

For N=2, call philosophers P1 and P2, and chopsticks C1 and C2
Deadlocking sequence:

P1 requests; gets C1

P2 requests; gets C2

P1 requests; WAITS for C2

P2 requests; WAITS for C1

** DEADLOCK **

Can avoid deadlock if the philosopher processes request both chopsticks
at once, and then the get both or wait until both are available

s-201

Comments on Deadlock

In practice, deadlocks can arise when waiting for some reusable
resources. For example, an operating system may be handling several
executing jobs, none of which has enough room to finish (and free up
memory for the others)

Operating systems may detect/avoid deadlocks by:
— checking continuously on requests for resources
— refusing to allocate resources if allocation would lead to a deadlock
— terminating a process that is responsible for deadlock

One can have a process that sits and watches, and can break a deadlock
if necessary. This process may be invoked:

— onatimed interrupt basis
— when aprocess wants to queue for aresource
— when deadlock is suspected (i.e.: CPU utilization has dropped to 0)

s-202

Indefinite Postponement

Indefinite postponement occurs when a process is blocked waiting for
an even that can, but will not occur in some future execution sequence

This may arise because other processes are “ganging up” on a process
to “starve” it

During indefinite postponement, the overall system does not grind to a
halt, but treats some of its processes unfairly

Indefinite postponement can be avoided by having priority queues
which serve concurrent processes on afirst-come, first-served basis

UNIX semaphores do this, using a FIFO (first-in, first-out) queue for
all requests

5-203

