
1

S -186

Posix Threads

S -187

Thread Concepts

• Threads are "lightweight processes"
– 10 to 100 times faster than fork()

• Threads share:

– process instructions, most data, file descriptors, signal
handlers/dispositions, current working directory, user/group Ids

• Each thread has its own:

– thread ID, set of registers (incl. Program counter and stack
pointer), stack (local vars, return addresses), errno, signal mask,
priority

• Posix threads will (we think) be the new UNIX thread standard

S -188

Creating a PThread

#include <pthread.h>

int pthread_create(pthread_t *tid, pthread_attr_t *attr,
                 void *(*func)(void *), void *arg)

• tid is unique within a process, returned by function

• attr

– sets priority, initial stack size, daemon status

– can specify as NULL

• func

– function to call to start thread
– accepts one void * argument, returns one void *

• arg is the argument to pass to func

S -189

Creating a Pthread [cont'd]

• pthread_create() returns 0 if successful,  a +ve error code if not

• does not set errno, but returns compatible codes

• can use strerror() to print error messages

Thread Termination
#include <pthread.h>

int pthread_join(pthread_t tid, void **status)

• tid

–  the thread ID of the thread to wait for

– cannot wait for any thread (cf. wait())

S -190

Thread Termination [cont'd]

• status, if not NULL, returns the void * returned by the thread when
it terminates

• a thread can terminate by

– returning from func()

– the main() function exiting

– pthread_exit()

#include <pthread.h>

void pthread_exit(void *status);

• a second way to exit, returns status explicitly

• status must not point to an object local to thread, as these disappear
when the thread terminates

S -191

"Detaching" Threads

#include <pthread.h>

int pthread_detach(pthread_t tid);

• threads are either joinable or detachable

• if a thread is detached, its termination cannot be tracked with
pthread_join() - it becomes a daemon thread

#include <pthread.h>

pthread_t pthread_self(void);

• returns the thread ID of the thread which calls it

• often see pthread_detach(pthread_self())



2

S -192

Passing Arguments to Threads

pthread_t thread_ID;

int fd, result ;

result = pthread_create(&thread_ID,

(pthread_attr_t *)NULL, myThreadFcn, (void *)&fd);

if (result != 0)

  printf("Error: %s\n", strerror(result));

• we can pass any variable (including a structure or array) to our thread
function; assumes thread function knows what type it is

S -193

Thread-Safe Functions

• Not all functions can be called from threads (e.g. strtok())

– many use global/static variables

– new versions of UNIX have thread-safe replacements, like
strtok_r()

• Safe:
– ctime_r(), gmtime_r(), localtime_r(),
rand_r(), strtok_r()

• Not Safe:
– ctime(), gmtime(), localtime(), rand(),
strtok(), gethostXXX(), inet_toa()

• could use semaphores to protect access

S -194

PThread Semaphores

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *name,

               const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *name);

int pthread_mutex_lock(pthread_mutex_t *name);

int pthread_mutex_trylock(pthread_mutex_t *name);

int pthread_mutex_unlock(pthread_mutex_t *name);

• pthread semaphores are easier to use than semget() and semop()

• all mutexes must be global

• only the thread that locks a mutex can unlock it

S -195

PThread Semaphores [cont'd]

pthread_mutex_t myMutex ;

int status ;

status = pthread_mutex_init(&myMutex, NULL) ;

if (status != 0)

  printf("Error: %s\n", strerror(status));

pthread_mutex_lock(&myMutex);

/* critical section here */

pthread_mutex_unlock(&myMutex);

status = pthread_mutex_destroy(&myMutex);

if (status != 0)

 printf("Error: %s\n", strerror(status));

S -196

Concurrency Concepts

S -197

Non-determinism

• A process is deterministic when it always produces the same result
when presented with the same data; otherwise a process is called

     non-deterministic

j = 10

print j

j = 100

exit

• Evaluation proceeds non-deterministically in one of two ways,
producing an output of 10 or 100

• Race conditions lead to non-determinism, and are generally undesirable



3

S -198

Deadlocks

• A concurrent program is in deadlock if all processes are waiting for
some event that will never occur

• Typical deadlock pattern:

Process 1 is holding resource X, waiting for Y

Process 2 is holding resource Y, waiting for X

Process 1 will not get Y until Process 2 releases it

Process 2 will not release Y until it gets X,

   which Process 1 is holding, waiting for …

S -199

Dining Philosophers

• N philosophers are seated
in a circle, one chopstick
between each adjacent pair

• Each philosopher needs two
chopsticks to eat, a left
chopstick and a right
chopstick

• A typical philosopher
process alternates between
eating and thinking
(see next slide)

S -200

Philosopher Process

loop

     <get one chopstick>

     <get other chopstick>

          <eat>

     <release one chopstick>

     <release other chopstick>

          <think>

endloop

S -201

Deadlock Example

• For N=2, call philosophers P1 and P2, and chopsticks C1 and C2

• Deadlocking sequence:

P1 requests; gets C1

P2 requests; gets C2

P1 requests; WAITS for C2

P2 requests; WAITS for C1

** DEADLOCK **

• Can avoid deadlock if the philosopher processes request both chopsticks
at once, and then the get both or wait until both are available

S -202

Comments on Deadlock
• In practice, deadlocks can arise when waiting for some reusable

resources.  For example, an operating system may be handling several
executing jobs, none of which has enough room to finish (and free up
memory for the others)

• Operating systems may detect/avoid deadlocks by:

– checking continuously on requests for resources

– refusing to allocate resources if allocation would lead to a deadlock

– terminating a process that is responsible for deadlock

• One can have a process that sits and watches, and can break a deadlock
if necessary.  This process may be invoked:

– on a timed interrupt basis

– when a process wants to queue for a resource

– when deadlock is suspected (i.e.: CPU utilization has dropped to 0)
S -203

Indefinite Postponement

• Indefinite postponement occurs when a process is blocked waiting for
an even that can, but will not occur in some future execution sequence

• This may arise because other processes are “ganging up” on a process
to “starve” it

• During indefinite postponement, the overall system does not grind to a
halt, but treats some of its processes unfairly

• Indefinite postponement can be avoided by having priority queues
which serve concurrent processes on a first-come, first-served basis

• UNIX semaphores do this, using a FIFO (first-in, first-out) queue for
all requests


