Shared Memory

Motivation

Shared memory allows two or more processes to share a given region
of memory -- thisisthe fastest form of IPC because the data does not
need to be copied between the client and server

The only trick in using shared memory is synchronizing accessto a
given region among multiple processes -- if the server is placing data
Into a shared memory region, the client shouldn’t try to access it until
the server isdone

Often, semaphores are used to synchronize shared memory access
(... semaphoreswill be covered a few lectures from now)

not covered in Wang, lookup in Stevens (APUE)

S-171

shnget ()

shnyget () isused to obtain a shared memory identifier:

#1 ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/shm h>

I nt shnget(key t key, int size, int flag);
shnget () returnsashared memory ID if OK, -1 on error

key istypically the constant “I PC_PRI VATE”, which lets the kernel
choose a new key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to a maximum value, where it then wraps around to zero

Si ze isthe size of the shared memory segment, in bytes
flagcanbe“SHM R’, “SHM W, or “SHM R| SHM W

S-172

shmat ()

Once a shared memory segment has been created, a process attaches it to
Its address space by calling shnat () :

void *shmat(int shmd, void *addr, int flag);
shmat () returns pointer to shared memory segment if OK, -1 on error
The recommended techniqueisto set addr andf | ag to zero, i.e.:

char *buf = (char *) shmat(shmd, 0, 0);
The UNIX commands “i pcs” and “i pcr ni are used to list and remove
shared memory segments on the current machine

The default action is for a shared memory segments to remain in the

system even after the process dies -- a better technique isto use
shnct | () toset up ashared memory segment to remove itself once the

processdies(... see next dlide)

S-173

shiet | ()

« shnttl () performsvarious shared memory operations:
Int shnctl (int shmd, int cnd,
struct shmd _ds *buf);
« cnd canbeoneof | PC_STAT, | PC SET, or | PC_RM D:
— | PC_STAT fillsthe buf data structure (see <sys/ shm h>)
— | PC_SET can change the uid, gid, and mode of theshm d

— | PC_RM D sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it — a process detaches a shared memory
segment using shndt (voi d *addr), whichissimilar to
free()

e shnttl () returnsOif OK, -1 on error

S-174

Shared Memory Example

char *ShareMal l oc(int size)

{
int shm d;
char *returnPtr;
| f((shm d=shnget(| PC PRI VATE, size, (SHM R SHMW)) < 0)
Abort("Failure on shnget {size is %}\n", size);
if((returnPtr=(char*) shmat(shmd, 0, 0)) == (void*) -1)
Abort("Failure on Shared Mem (shmat)");
shnectl (shmd, IPCRMD, (struct shmd ds *) NULL);
return(returnPtr);
}

S-175

mrap()

An alternative to shared memory is memory mapped i/o, which maps a
file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

One advantage is that the contents of files are non-volatile
Usage:
caddr _t mmap(caddr _t addr, size t len, int
prot, int flag, int filedes, off t off);
— addr and of f should be set to zero,
— | en isthe number of bytesto allocate
— pr ot isthefile protection, typically (PROT _READ| PROT_V\RI TE)
— f 1 ag should be set to MAP_ SHARED to emulate shared memory
— fi | edes isafiledescriptor that should be opened previously

S-176

Memory Mapped |/O Example

char *ShareMal | oc(int size)
{
int fd;
char *returnPtr;
i f((fd = open("/tnp/map", O CREAT | O RDWR, 0666)) < 0)
Abort("Failure on open");
i f(|Iseek(fd, size-1, SEEK SET) == -1)
Abort("Failure on | seek");
if(wite(fd, "", 1) I'=1)
Abort("Failure on wite");
i1 f((returnPtr = (char *) mmp(0, size, PROT_READ| PROT_WRI TE,
MAP SHARED, fd, 0)) == (caddr_t) -1)
Abort("Failure on mmap");
return(returnPtr);

S-177

Semaphores

Motivation

Programs that manage shared resources must execute portions of code
called critical sections in a mutually exclusive manner. A common
method of protecting critical sectionsisto use semaphores

Code that modifies shared data usually has the following parts:

Entry Section: The code that requests permission to modify
the shared data.
Critical Section: The code that modifies the shared variable.
Exit Section: The code that rel eases access to the shared data.
Remainder Section: The remaining code.

S-179

The Critical Section Problem

» Thecritical section problem refers to the problem of executing critical
sectionsin afair, symmetric manner. Solutionsto the critical section
problem must satisfy each of the following:

Mutual Exclusion: At most one processisinitscritical section at
any time.
Progress: If no processis executing its critical section, a
process that wishes to enter can get in.
Bounded Waiting: No processis postponed indefinitely.

 An atomic operation is an operation that, once started, completesin a
logical indivisible way. Most solutions to the critical section problem
rely on the existence of certain atomic operations

S-180

Semaphores

A semaphore is an integer variable with two atomic operations. wait and
signal. Other names for wait are down, P, and lock. Other names for
signal are up, V, unlock, and post.

A process that executes await on a semaphore variable S cannot
proceed until the value of Sis positive. It then decrements the value of
S. The signal operation increments the value of the semaphore variable.
Some (flawed) pseudocode:

void wait(int *s) void signal(int *s)
{ {

while(*s <=0) ; (*s) ++;

(*s)--; }

S-181

Semaphores (cont.)

Three problems with the previous dide’s wai t () andsi gnal () :
— busy waiting is inefficient

— doesn’t guarantee bounded waiting

— “++4” and “- - 7 operations aren’t necessarily atomic!

Solution: use system callssenget () and senop() (... seenext dide)

The following pseudocode protects a critical section:
wait(&s);
/[* critical section */
signal (&);
/* remal nder section */
What happensif Sisinitially 0? What happensif Sisinitially 8?

S-182

senget ()

Usage:
#1 ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/sem h>

#i ncl ude <sys/stat. h>

| nt senget(key t key, int nsens, int senflg);
Creates a semaphore set and initializes each element to zero
Example:

Int sem D = senget (| PC PRI VATE, 1,

SIRUSR | S IWISR);

Like shared memory, i cps andi pcr m can list and remove semaphores

S-183

senop()

Usage: int senop(int semd, struct senmbuf *sops,
| nt nsops);
Increment, decrement, or test semaphores elements for a zero value.
From <sys/ sem h>:
SOpsS->sem num SOopsS->sem op, sops->sem flg;
If sem op ispositive, senop() adds value to semaphore element and
awakens processes waiting for the element to increase

If sem op isnhegative, senop() addsthe value to the semaphore
element and if <0, senop() setsto O and blocks until it increases

If sem op iszero and the semaphore element value is not zero,
senop() blocksthe calling process until the value becomes zero

If senop() isinterrupted by asignal, it returns-1 witherr no = El NTR

S-184

Example

struct senbuf senit[1] ={ 0, -1, 0},
senSignal[1] ={ 0, 1, 0 };
I nt sem D

senmop(sem D, sentignal, 1); /* init to 1 */

while((senmop(sem D, semMit, 1) == -1) &&
(errno == EINTR))

{ I* critical section */ }

whil e((senmop(sem D, sentignal, 1) == -1) &&
(errno == EINTR))

S-185

