Shared Memory

5-170

Motivation

« Shared memory allows two or more processes to share a given region

of memory -- thisis the fastest form of IPC because the data does not
need to be copied between the client and server

« Theonly trick in using shared memory is synchronizing accessto a
given region among multiple processes -- if the server is placing data
into a shared memory region, the client shouldn’t try to accessit until
the server is done

« Often, semaphores are used to synchronize shared memory access
(... semaphores will be covered a few lectures from now)

« not covered in Wang, lookup in Stevens (APUE)

S-171

shnyget ()

« shnget () isused to obtain a shared memory identifier:
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>
int shmget(key_t key, int size, int flag);
« shnget () returnsashared memory ID if OK, -1 on error
« key istypically the constant “I PC_PRI VATE", which lets the kernel
choose anew key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to amaximum value, where it then wraps around to zero
« si ze isthesize of the shared memory segment, in bytes
. flagcanbe“SHV R, “SHM W, or “SHM R| SHM W

s-172

shmat ()

« Once ashared memory segment has been created, a process attaches it to
its address space by calling shmat () :
void *shmat(int shmd, void *addr, int flag);
« shmat () returns pointer to shared memory segment if OK, -1 on error
« Therecommended techniqueisto set addr and f | ag to zero, i.e::
char *buf = (char *) shmat(shmd, 0, 0);
* TheUNIX commands“i pcs” and“i pcr ni are used to list and remove
shared memory segments on the current machine

« Thedefault action is for a shared memory segments to remain in the
system even after the process dies -- a better technique is to use
shnet | () to set up ashared memory segment to remove itself once the
processdies (... see next slide)

5-173

shnct | ()

« shnctl () performsvarious shared memory operations:
int shnetl (int shmd, int cnd,
struct shmd_ds *buf);
« cnd can beoneof | PC_STAT, | PC_SET, or | PC_RM D:
— | PC_STAT fillsthe buf datastructure (see <sys/ shm h>)
— | PC_SET can change the uid, gid, and mode of theshni d
— | PC_RM D sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it — a process detaches a shared memory
segment using shndt (voi d *addr), whichissimilar to
free()
¢ shnetl () returns0if OK, -1 on error

S-174

Shared Memory Example

char *ShareMal l oc(int size)

{
int shnid;
char *returnptr;

if((shm d=shnget(|PC_PRI VATE, size, (SHMR SHMW)) <0)
Abort ("Failure on shnget {size is %}\n", size);

if((returnPtr=(char*) shmat(shmd, 0, 0)) == (void*) -1)
Abort("Failure on Shared Mem (shmat)");

shnetl (shmd, IPC_RMD, (struct shmid_ds *) NULL);
return(returnPtr);

S-175

mrap()

« Analternative to shared memory is memory mapped i/o, which maps a

file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

« Oneadvantage s that the contents of files are non-volatile
* Usage:

caddr _t mmap(caddr_t addr, size_t len, int
prot, int flag, int filedes, off_t off);

— addr and of f should be set to zero,

— | en isthe number of bytesto allocate

— prot isthefile protection, typically (PROT_READ| PROT_WRI TE)

— f 1 ag should be set to MAP_SHARED to emul ate shared memory

— fil edes isafiledescriptor that should be opened previously

5-176

Memory Mapped I/O Example

char *ShareMal loc(int size)
{
int fd;
char *returnptr;
if((fd = open("/tnp/mmap", O CREAT | O RDWR, 0666)) < 0)
Abort("Failure on open");
if(I'seek(fd, size-1, SEEK SET) == -1)
Abort("Failure on |seek");
if(wite(fd, ", 1) 1=1)
Abort("Failure on wite");
if((returnPtr = (char *) mmap(0, size, PROT_READ| PROT_WRI TE,
MAP_SHARED, fd, 0)) == (caddr_t) -1)
Abort("Failure on mmap");
return(returnPtr);

s-177

Semaphores

s-178

Motivation

Programs that manage shared resources must execute portions of code
called critical sectionsin amutually exclusive manner. A common
method of protecting critical sectionsis to use semaphores

Code that modifies shared data usually has the following parts:

Entry Section: The code that requests permission to modify
the shared data.
Critical Section: The code that modifies the shared variable.
Exit Section: The code that releases access to the shared data.
Remainder Section: The remaining code.

5-179

The Critical Section Problem

The critical section problem refers to the problem of executing critical
sectionsin afair, symmetric manner. Solutions to the critical section
problem must satisfy each of the following:

Mutual Exclusion: At most one processisin its critical section at
any time.
Progress: If no process is executing its critical section, a
process that wishes to enter can get in.
Bounded Waiting: No process is postponed indefinitely.
An atomic operation is an operation that, once started, completesin a

logical indivisible way. Most solutions to the critical section problem
rely on the existence of certain atomic operations

5-180

Semaphores

A semaphore is an integer variable with two atomic operations: wait and
signal. Other names for wait are down, P, and lock. Other names for
signal are up, V, unlock, and post.
A process that executes await on a semaphore variable S cannot
proceed until the value of Sis positive. It then decrements the value of
S. The signal operation increments the value of the semaphore variable.
Some (flawed) pseudocode:
void wait(int *s) void signal (int *s)
{ {
while(*s <= 0) ; (*s) ++;
(*s)--: }

s-181

Semaphores (cont.)

Three problems with the previous slide’s wai t () andsi gnal ():

— busy waiting isinefficient

— doesn’t guarantee bounded waiting

— “++" and “- - " operations aren’t necessarily atomic!

Solution: use system callssenget () andsenop() (... seenext slide)

The following pseudocode protects a critical section:
wait(&);
/* critical section */
signal (&);
/* remai nder section */
What happensif Sisinitially 0? What happensif Sisinitially 82

s-182

senyget ()

Usage:

#i ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/sem h>

#i ncl ude <sys/stat.h>

int senget(key_t key, int nsems, int senflg);
Creates a semaphore set and initializes each element to zero
Example:

int sem D = senget(| PC_PRIVATE, 1,

S IRUSR| S IWSR);

Like shared memory, i cps andi pcr m can list and remove semaphores

s-183

senop()

Usage: int senop(int senmid, struct sembuf *sops,
int nsops);

Increment, decrement, or test semaphores elements for a zero value.
From<sys/sem h>:

sops- >sem num sops->sem op, sops->sem flg;
If sem op ispositive, senpp() adds value to semaphore element and
awakens processes waiting for the element to increase
if sem op isnegative, senop() adds the value to the semaphore
element and if <0, senpp() setsto 0 and blocks until it increases
if sem_op is zero and the semaphore element value is not zero,
senop() blocks the calling process until the value becomes zero
if senmop() isinterrupted by asignal, it returns-1 wither r no = EI NTR

s-184

Example

struct senbuf semait[1] ={ o0 -1,
senSignal [1] = { 0, 1,

int sen D

senop(sem D, senSignal, 1); /* init to 1 */

while((senop(sem D, semMit, 1) ==-1) &&
(errno == EINTR))

{ [* critical section */ }
while((senop(sem D, senfignal, 1) == -1) &&
(errno == EINTR))

5-185

