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Shared Memory
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Motivation

• Shared memory allows two or more processes to share a given region
of memory -- this is the fastest form of IPC because the data does not
need to be copied between the client and server

• The only trick in using shared memory is synchronizing access to a
given region among multiple processes -- if the server is placing data
into a shared memory region, the client shouldn’t try to access it until
the server is done

• Often, semaphores are used to synchronize shared memory access
( … semaphores will be covered  a few lectures from now)

• not covered in Wang, lookup in Stevens (APUE)
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shmget()

• shmget() is used to obtain a shared memory identifier:

  #include <sys/types.h>

  #include <sys/ipc.h>

  #include <sys/shm.h>

  int shmget( key_t key, int size, int flag );

• shmget() returns a shared memory ID if OK, -1 on error

• key is typically the constant “IPC_PRIVATE”, which lets the kernel
choose a new key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to a maximum value, where it then wraps around to zero

• size is the size of the shared memory segment, in bytes

• flag can be “SHM_R”, “SHM_W”, or  “SHM_R|SHM_W”
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shmat()

• Once a shared memory segment has been created, a process attaches it to
its address space by calling shmat():

 void *shmat( int shmid, void *addr, int flag );

• shmat() returns pointer to shared memory segment if OK, -1 on error

• The recommended technique is to set addr and flag to zero, i.e.:

 char *buf = (char *) shmat( shmid, 0, 0 );

• The UNIX commands “ipcs” and “ipcrm” are used to list and remove
shared memory segments on the current machine

• The default action is for a shared memory segments to remain in the
system even after the process dies -- a better technique is to use
shmctl() to set up a shared memory segment to remove itself once the
process dies ( … see next slide)
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shmctl()

• shmctl() performs various shared memory operations:

  int shmctl( int shmid, int cmd,

              struct shmid_ds *buf );

• cmd can be one of IPC_STAT, IPC_SET, or IPC_RMID:

– IPC_STAT fills the buf data structure (see  <sys/shm.h>)

– IPC_SET can change the uid, gid, and mode of the shmid

– IPC_RMID sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it  — a process detaches a shared memory
segment using shmdt( void *addr ), which is similar to
free()

• shmctl() returns 0 if OK, -1 on error
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Shared Memory Example

char *ShareMalloc( int size )

{

   int  shmId;

   char *returnPtr;

   if( (shmId=shmget( IPC_PRIVATE, size, (SHM_R|SHM_W) )) < 0 )

      Abort( "Failure on shmget {size is %d}\n", size );

   if( (returnPtr=(char*) shmat( shmId, 0, 0 )) == (void*) -1 )

      Abort( "Failure on Shared Mem (shmat)" );

   shmctl( shmId, IPC_RMID, (struct shmid_ds *) NULL );

   return( returnPtr );

}



2

S -176

mmap()

• An alternative to shared memory is memory mapped i/o, which maps a
file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

• One advantage is that the contents of files are non-volatile

• Usage:
caddr_t mmap( caddr_t addr, size_t len, int

       prot, int flag, int filedes, off_t off );

– addr and off should be set to zero,

– len is the number of bytes to allocate

– prot is the file protection, typically (PROT_READ|PROT_WRITE)

– flag should be set to MAP_SHARED to emulate shared memory

– filedes is a file descriptor that should be opened previously

S -177

Memory Mapped I/O Example
char *ShareMalloc( int size )

{

   int  fd;

   char *returnPtr;

   if( (fd = open( "/tmp/mmap", O_CREAT | O_RDWR, 0666 )) < 0 )

      Abort( "Failure on open" );

   if( lseek( fd, size-1, SEEK_SET ) == -1 )

      Abort( "Failure on lseek" );

   if( write( fd, "", 1 ) != 1 )

      Abort( "Failure on write" );

   if( (returnPtr = (char *) mmap(0, size, PROT_READ|PROT_WRITE,

         MAP_SHARED, fd, 0 )) == (caddr_t) -1 )

      Abort( "Failure on mmap" );

   return( returnPtr );

}
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Semaphores
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Motivation

• Programs that manage shared resources must execute portions of code
called critical sections in a mutually exclusive manner.  A common
method of protecting critical sections is to use semaphores

• Code that modifies shared data usually has the following parts:

                Entry Section:  The code that requests permission to modify

                                  the shared data.

     Critical Section:  The code that modifies the shared variable.

           Exit Section:  The code that releases access to the shared data.

Remainder Section:  The remaining code.
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The Critical Section Problem

• The critical section problem refers to the problem of executing critical
sections in a fair, symmetric manner.  Solutions to the critical section
problem must satisfy each of the following:

   Mutual Exclusion: At most one process is in its critical section at

                                  any time.

                 Progress: If no process is executing its critical section, a

                                  process that wishes to enter can get in.

    Bounded Waiting: No process is postponed indefinitely.

• An atomic operation is an operation that, once started, completes in a
logical indivisible way.  Most solutions to the critical section problem
rely on the existence of certain atomic operations
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Semaphores

• A semaphore is an integer variable with two atomic operations: wait and
signal.  Other names for wait are down, P, and lock.  Other names for
signal are up, V, unlock, and post.

• A process that executes a wait on a semaphore variable S cannot

proceed until the value of S is positive.  It then decrements the value of

S.  The signal operation increments the value of the semaphore variable.

• Some (flawed) pseudocode:
 void wait( int *s )      void signal( int *s )

 {                        {

    while( *s <= 0 ) ;       (*s)++;

    (*s)--;               }

 }
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Semaphores (cont.)

• Three problems with the previous slide’s  wait() and signal():

– busy waiting is inefficient

– doesn’t guarantee bounded waiting

– “++” and “--” operations aren’t necessarily atomic!

• Solution: use system calls semget() and semop() (… see next slide)

• The following pseudocode protects a critical section:
 wait( &s );

 /* critical section */

 signal( &s );

 /* remainder section */

• What happens if S is initially 0?  What happens if S is initially 8?
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semget()

• Usage:
 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 #include <sys/stat.h>

 int semget( key_t key, int nsems, int semflg );

• Creates a semaphore set and initializes each element to zero

• Example:
 int semID = semget( IPC_PRIVATE, 1,

                     S_IRUSR | S_IWUSR );

• Like shared memory, icps and ipcrm  can list and remove semaphores
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semop()

• Usage:  int semop( int semid, struct sembuf *sops,

                int nsops );

• Increment, decrement, or test semaphores elements for a zero value.

• From <sys/sem.h>:

   sops->sem_num, sops->sem_op, sops->sem_flg;

• If sem_op is positive, semop() adds value to semaphore element and
awakens processes waiting for the element to increase

• if sem_op is negative, semop() adds the value to the semaphore
element and if < 0, semop() sets to 0 and blocks until it increases

• if sem_op is zero and the semaphore element value is not zero,
semop() blocks the calling process until the value becomes zero

• if semop() is interrupted by a signal, it returns -1 with errno = EINTR
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Example
struct sembuf semWait[1]   = { 0, -1, 0 },

              semSignal[1] = { 0,  1, 0 };

int semID;

semop( semID, semSignal, 1 ); /* init to 1 */

while( (semop( semID, semWait, 1 ) == -1) &&

       (errno == EINTR) )

   ;

{ /* critical section */ }

while( (semop( semID, semSignal, 1 ) == -1) &&

       (errno == EINTR) )

   ;


