
1

S -170

Shared Memory

S -171

Motivation

• Shared memory allows two or more processes to share a given region
of memory -- this is the fastest form of IPC because the data does not
need to be copied between the client and server

• The only trick in using shared memory is synchronizing access to a
given region among multiple processes -- if the server is placing data
into a shared memory region, the client shouldn’t try to access it until
the server is done

• Often, semaphores are used to synchronize shared memory access
(… semaphores will be covered a few lectures from now)

• not covered in Wang, lookup in Stevens (APUE)

S -172

shmget()

• shmget() is used to obtain a shared memory identifier:

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/shm.h>

 int shmget(key_t key, int size, int flag);

• shmget() returns a shared memory ID if OK, -1 on error

• key is typically the constant “IPC_PRIVATE”, which lets the kernel
choose a new key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to a maximum value, where it then wraps around to zero

• size is the size of the shared memory segment, in bytes

• flag can be “SHM_R”, “SHM_W”, or “SHM_R|SHM_W”

S -173

shmat()

• Once a shared memory segment has been created, a process attaches it to
its address space by calling shmat():

 void *shmat(int shmid, void *addr, int flag);

• shmat() returns pointer to shared memory segment if OK, -1 on error

• The recommended technique is to set addr and flag to zero, i.e.:

 char *buf = (char *) shmat(shmid, 0, 0);

• The UNIX commands “ipcs” and “ipcrm” are used to list and remove
shared memory segments on the current machine

• The default action is for a shared memory segments to remain in the
system even after the process dies -- a better technique is to use
shmctl() to set up a shared memory segment to remove itself once the
process dies (… see next slide)

S -174

shmctl()

• shmctl() performs various shared memory operations:

 int shmctl(int shmid, int cmd,

 struct shmid_ds *buf);

• cmd can be one of IPC_STAT, IPC_SET, or IPC_RMID:

– IPC_STAT fills the buf data structure (see <sys/shm.h>)

– IPC_SET can change the uid, gid, and mode of the shmid

– IPC_RMID sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it — a process detaches a shared memory
segment using shmdt(void *addr), which is similar to
free()

• shmctl() returns 0 if OK, -1 on error

S -175

Shared Memory Example

char *ShareMalloc(int size)

{

 int shmId;

 char *returnPtr;

 if((shmId=shmget(IPC_PRIVATE, size, (SHM_R|SHM_W))) < 0)

 Abort("Failure on shmget {size is %d}\n", size);

 if((returnPtr=(char*) shmat(shmId, 0, 0)) == (void*) -1)

 Abort("Failure on Shared Mem (shmat)");

 shmctl(shmId, IPC_RMID, (struct shmid_ds *) NULL);

 return(returnPtr);

}

2

S -176

mmap()

• An alternative to shared memory is memory mapped i/o, which maps a
file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

• One advantage is that the contents of files are non-volatile

• Usage:
caddr_t mmap(caddr_t addr, size_t len, int

 prot, int flag, int filedes, off_t off);

– addr and off should be set to zero,

– len is the number of bytes to allocate

– prot is the file protection, typically (PROT_READ|PROT_WRITE)

– flag should be set to MAP_SHARED to emulate shared memory

– filedes is a file descriptor that should be opened previously

S -177

Memory Mapped I/O Example
char *ShareMalloc(int size)

{

 int fd;

 char *returnPtr;

 if((fd = open("/tmp/mmap", O_CREAT | O_RDWR, 0666)) < 0)

 Abort("Failure on open");

 if(lseek(fd, size-1, SEEK_SET) == -1)

 Abort("Failure on lseek");

 if(write(fd, "", 1) != 1)

 Abort("Failure on write");

 if((returnPtr = (char *) mmap(0, size, PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, 0)) == (caddr_t) -1)

 Abort("Failure on mmap");

 return(returnPtr);

}

S -178

Semaphores

S -179

Motivation

• Programs that manage shared resources must execute portions of code
called critical sections in a mutually exclusive manner. A common
method of protecting critical sections is to use semaphores

• Code that modifies shared data usually has the following parts:

 Entry Section: The code that requests permission to modify

 the shared data.

 Critical Section: The code that modifies the shared variable.

 Exit Section: The code that releases access to the shared data.

Remainder Section: The remaining code.

S -180

The Critical Section Problem

• The critical section problem refers to the problem of executing critical
sections in a fair, symmetric manner. Solutions to the critical section
problem must satisfy each of the following:

 Mutual Exclusion: At most one process is in its critical section at

 any time.

 Progress: If no process is executing its critical section, a

 process that wishes to enter can get in.

 Bounded Waiting: No process is postponed indefinitely.

• An atomic operation is an operation that, once started, completes in a
logical indivisible way. Most solutions to the critical section problem
rely on the existence of certain atomic operations

S -181

Semaphores

• A semaphore is an integer variable with two atomic operations: wait and
signal. Other names for wait are down, P, and lock. Other names for
signal are up, V, unlock, and post.

• A process that executes a wait on a semaphore variable S cannot

proceed until the value of S is positive. It then decrements the value of

S. The signal operation increments the value of the semaphore variable.

• Some (flawed) pseudocode:
 void wait(int *s) void signal(int *s)

 { {

 while(*s <= 0) ; (*s)++;

 (*s)--; }

 }

3

S -182

Semaphores (cont.)

• Three problems with the previous slide’s wait() and signal():

– busy waiting is inefficient

– doesn’t guarantee bounded waiting

– “++” and “--” operations aren’t necessarily atomic!

• Solution: use system calls semget() and semop() (… see next slide)

• The following pseudocode protects a critical section:
 wait(&s);

 /* critical section */

 signal(&s);

 /* remainder section */

• What happens if S is initially 0? What happens if S is initially 8?

S -183

semget()

• Usage:
 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 #include <sys/stat.h>

 int semget(key_t key, int nsems, int semflg);

• Creates a semaphore set and initializes each element to zero

• Example:
 int semID = semget(IPC_PRIVATE, 1,

 S_IRUSR | S_IWUSR);

• Like shared memory, icps and ipcrm can list and remove semaphores

S -184

semop()

• Usage: int semop(int semid, struct sembuf *sops,

 int nsops);

• Increment, decrement, or test semaphores elements for a zero value.

• From <sys/sem.h>:

 sops->sem_num, sops->sem_op, sops->sem_flg;

• If sem_op is positive, semop() adds value to semaphore element and
awakens processes waiting for the element to increase

• if sem_op is negative, semop() adds the value to the semaphore
element and if < 0, semop() sets to 0 and blocks until it increases

• if sem_op is zero and the semaphore element value is not zero,
semop() blocks the calling process until the value becomes zero

• if semop() is interrupted by a signal, it returns -1 with errno = EINTR

S -185

Example
struct sembuf semWait[1] = { 0, -1, 0 },

 semSignal[1] = { 0, 1, 0 };

int semID;

semop(semID, semSignal, 1); /* init to 1 */

while((semop(semID, semWait, 1) == -1) &&

 (errno == EINTR))

 ;

{ /* critical section */ }

while((semop(semID, semSignal, 1) == -1) &&

 (errno == EINTR))

 ;

