
Dense Stereo Reconstruction in a Field Programmable
Gate Array

by

Siraj Sabihuddin

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2008 by Siraj Sabihuddin

Abstract

Dense Stereo Reconstruction in a Field Programmable Gate Array

Siraj Sabihuddin

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2008

Estimation of depth within an imaged scene can be formulated as a stereo correspon-

dence problem. Software solutions tend to be too slow for high frame rate (i.e. ≥ 30

fps) performance. Hardware solutions can result in marked improvements. This thesis

explores one such hardware implementation that generates dense binocular disparity esti-

mates at frame rates of over 200 fps using a dynamic programming formulation (DPML)

developed by Cox et al. [4]. A highly parameterizable field programmable gate array

implementation of this architecture demonstrates equivalent accuracy while executing at

significantly higher frame rates to those of current approaches. Existing hardware im-

plementations for dense disparity estimation often use sum of squared difference, sum of

absolute difference or other similar algorithms that typically perform poorly in compar-

ison to DPML. The presented system runs at 248 fps for a resolution of 320× 240 pixels

and disparity range of 128 pixels, a performance of 2.477 billion DPS.

ii

Dedication

This thesis is dedicated to all the people who kept me company during my studies.

Without them, I might very well have found myself trapped alone in a rather dingy little

room. I think there is a somewhat profound connection between a person’s motivations

in life and their environment ... thank you all for making my stay a pleasant one.

iii

Acknowledgements

First and foremost, I would like to extend my gratitude towards W. James MacLean.

James you have been a good supervisor. I enjoyed our conversations and really appreci-

ated your advise and input. And thank you for being patient through all my fumbling

attempts at research.

I would also like to thank all the old folks from the Vision Lab. I particularly enjoyed

the company of Christina Cabani and Joshua Worby early during my Masters. Thanks

also to Divyang Masrani who occasionally pops in to restart a crashed simulation. Oh

and then there is my Romanian, Iranian, Chinese, Polish, French, Russian and Indian

friends in the Systems Lab. I don’t know how you all ended up in Canada, but I’m glad

you did — we had some truly interesting arguments.

I am grateful to my friends in Ryerson and Queens who helped me with my work

and, after some gentle persuasion, also fed me. A big thank you to Jamin Islam, Valeri

Kirishchian, Peter Chun and Michael Belshaw — don’t think you have gotten rid of me!

Finally, I’m grateful to the dedicated people at ECE Help who patiently diverted

repeated requests for the root password. It was probably for the best, who knows what

kind of mess I would have gotten into. And of-course thanks, in advance, to my committee

members for slogging through another rather long thesis.

iv

Contents

1 Introduction 1

2 Background 4

2.1 Scene and Camera Modeling . 5

2.1.1 Reflectance . 5

2.1.2 Single View Geometry: The Camera Model 6

2.2 Two View Stereo Geometry . 10

2.3 Stereo Matching . 13

2.3.1 Stereo Issues . 15

2.3.2 Dynamic Programming Based Correspondence 17

2.4 Custom Hardware . 23

2.5 Literature Review . 26

2.5.1 General Stereo Correspondence 26

2.5.2 Hardware Based Stereo Correspondence 27

2.6 Summary . 30

3 System Design 31

3.1 Serial Architecture . 32

3.1.1 System Overview . 33

3.1.2 Discussion . 37

3.2 Parallel Architecture . 38

v

3.2.1 System Overview . 45

3.2.2 Interfaces: Rectification and Tracking 47

3.2.3 Parallelizing Buffers . 48

3.2.4 Memory Addressing . 49

3.2.5 Cost Computatation . 50

3.2.6 Match and Depth Computations 55

3.2.7 Pipeling . 59

3.2.8 State Machine . 61

3.2.9 Discussion . 63

3.3 Summary . 66

4 Results and Discussion 67

4.1 Accuracy . 68

4.1.1 Improving Accuracy . 69

4.2 Speed and Timing . 74

4.2.1 Improving Timing Performance 79

4.3 Resource Utilization . 81

4.3.1 Improving Resource Utilization 82

4.4 Summary . 84

5 Conclusion and Future Work 86

Bibliography 88

vi

List of Tables

3.1 A timing diagram for the MBUF during the first few clock cycles of the

backward pass. 59

4.1 Accuracy rankings, root mean squared error and percent bad matching

pixels for four standard data sets. 70

4.2 A timing comparison of various DPML hardware and software implemen-

tations. 76

4.3 A comparison of frame rates and depth pixels per second of various existing

hardware implementations. 78

4.4 Longest path delays, in nanoseconds, for fully/partially parallelized and

serial hardware implementations of Cox’s DPML algorithm. 78

4.5 A quantative look at the number of higher level logical blocks required for

an implementation of DPMLHW. 82

4.6 Resource utilization resulting from an implementation of DPMLHW for a

Xilinx XC2VP100 device. 83

vii

List of Figures

2.1 A rough categorization of reflectance. 6

2.2 A pinhole camera model. 7

2.3 Types of distortion resulting from the lense assembly. 8

2.4 A binocular stereo camera system. 11

2.5 A flow chart of sparse and dense disparity estimation. 14

2.6 Ordering and uniqueness constraints. 19

2.7 Constructing the cost matrix for a toy example. 22

2.8 A die for an ASIC implementation of the AMD Barcelona Microprocessor. 25

2.9 An example of an FPGA architcture. 25

3.1 An observation of the structure of the cost matrix and associated writes

in the match matrix demonstrate that it is possible to reduce memory

utilization. 33

3.2 Retaining cost matrix structure in CBUF. 34

3.3 Retaining cost matrix structure in CBUF given a disparity range Dmax. . 34

3.4 High level architecture for a serial hardware implementation of the DPML

algorithm. 36

3.5 Careful observation of the structure of the cost matrix demonstrates that

it is possible to parallelize cost computation. 39

3.6 Parallelization requires buffers that recieve a serial pixel input stream. . . 40

3.7 Parallelization of match matrix writes. 40

viii

3.8 High level architecture for a highly parallelized hardware implementation

of the DPML algorithm. 46

3.9 Integrating stereo correspondence into a larger system — a high level block

diagram. 49

3.10 Schematic diagram for the image pixel buffer, IBUF. 50

3.11 Schematic diagram for counter modules. 51

3.12 Schematic diagram for BCMP and MCMP comparators. 52

3.13 Schematic diagrams for PNOC and MUX. 53

3.14 Schematic diagrams for PMIN and CMUX. 54

3.15 Cost Buffer (CBUF) schematic diagram. 55

3.16 A schematic diagram for the match matrix (MBUF). 57

3.17 A schematic diagram for multibank dual port RAM used by MBUF. . . . 58

3.18 A schematic diagram for the disparity memory (DBUF). 60

3.19 The hardware pipeline. 60

3.20 Backtracking Multiplexer (BMUX) schematic diagram. 62

3.21 The state machine for the pipelined hardware architecture. 63

4.1 Tsukuba, Venus, Teddy and Cones data sets and their ground truths. . . 69

4.2 Stereo correspondence results for SSD and CORR. 70

4.3 Stereo correspondence results for DPML and DPMLHW. 71

4.4 Real world stereo correspondence results from DPMLHW. 72

4.5 Gaussian smoothed stereo corresondence results from DPMLHW. 73

4.6 Median filtered stereo correspondence results from DPMLHW. 73

ix

Chapter 1

Introduction

Humans use vision to effortlessly detect, identify and track objects in a three-dimensional

(3D) world. A key component of this ability is the perception of depth. While this

perception has many facets, one of particular importance is stereo imaging, whereby a

3D scene is projected onto two individual eyes from slightly different viewpoints. These

differing viewpoints are used by the brain to reconstruct the original 3D scene for tracking

and navigation purposes.

The process of 3D reconstruction can be duplicated in artificial systems using digital

cameras in place of eyes and a computer system as the brain. Since extraction of such

3D structure from two (or more) two dimensional (2D) images is essentially a matter of

triangulation, it becomes necessary to identify points, in each viewpoint, that represent

the same 3D position in the scene. This process of finding point corresondences between

multiple 2D images, of a particular 3D environment, is referred to as stereo matching or

stereo correspondence.

Algorithms for determining these correspondences are far from trivial and have been

studied extensively by the computer vision community with the aim of mimicing and

exceeding biological vision — it is conceivable that such algorithms could find applications

in environments not normally encountered in human activities where resolutions and

1

Chapter 1. Introduction 2

motion capture speeds in excess of human visual acuity may be required.

This thesis performs such high speed depth estimation using a hardware architecture

for a dynamic programming maximum likelihood (DPML) matching algorithm originally

developed by Cox et al. [4]. This highly parallelized DPML hardware (DPMLHW) im-

plementation demonstrates vastly superior frame rates (≥ 200 fps) to existing stereo

matching systems. These frame rates are generated at high resolutions (640×480 pixels)

and with high degrees of accuracy in the resulting 3D reconstruction — an accuracy

comparable to the best of existing systems.

Correspondence algorithms are typically classified into dense and sparse methods.

DPML is a dense method which attempts to find correspondences, and subsequently the

disparity between correspondences, for every pixel location in a particular 2D reference

image. This disparity, in-turn, allows the reconstruction of depth at all pixel locations.

Sparse methods look at higher level features (e.g. corners) and generate correspondences

between these features for a depth estimate at the particular feature’s pixel location —

typically there are far fewer high level features in an image than there are pixels.

The search for matches may be cast into a probabilistic framework, whereby regions

in a stereo pair demonstrating high correlation are considered more likely candidates for

a correspondence. DPML makes use of a maximum likelihood (ML) formulation for this

purpose.

Frameworks and models of increasing complexity may improve performance, in such

situations, at the cost of additional computational and memory resources. This complex-

ity, combined with the high volume of data coming from stereo camera system, limits the

viability of implementations of stereo matching algorithms for real time use in general

purpose processor systems. Dynamic programming (DP) optimization techniques, as uti-

lized by DPML, can help to reduce computational load and make such implementations

more feasible. This is done by exploiting the bottom up substructure of a solution to

reduce repeated calculations, and thus, the time required to arrive at an optimal solution

Chapter 1. Introduction 3

(see Cormen et al. [3] for details).

Further improvements in speed and frame rates can be achieved by using custom pro-

cessing hardware (HW). These custom implementations are often termed as Application

Specific Integrated Circuits (ASICs). The highly parallelized nature of stereo matching

tasks allows ASICs to process multiple pieces of data simultaneously rather than seqen-

tially. However, design and development cycles for ASICs tend to be lengthy and costly,

so it is common to design prototypes using Field Programmable Gate Arrays (FPGAs).

These FPGAs contain arrays of reconfigurable logic blocks that allow for rapid hardware

prototyping at relatively low costs.

This document begins in Chapter 2 with an introduction to stereo reconstruction, op-

timization techniques, FPGA systems and a review of recent literature. Following this,

Chapter 3 proposes a set of novel hardware implementations of Cox’s DPML [4] algo-

rithm. These are the only hardware implementations of DPML based stereo correspon-

dence presently known to exist. Finally, Chapter 4 demonstrates the results generated

from an actual hardware implementation and compares them to other state-of-the-art

stereo implementations. Chapter 5 concludes with a proposal of possible directions for

future work.

Chapter 2

Background

The process of 3D reconstruction from multiple 2D images is based on a vast body of

pre-existing literature. This chapter discusses some of the theories that have formed

the foundations of present day stereo reconstruction and, likewise, the foundations of

hardware based reconstruction. This chapter begins, first, in Section 2.1 with a discussion

of typical camera systems. Section 2.2 continues to put these camera systems into the

context of stereo and 3D reconstruction. In order to perform matching tasks associated

with reconstruction, some form of optimization process takes place — the set of most

likely matches resulting from these optimizations are used as a basis for triangulation.

These correspondence and optimization techniques are discussed in Section 2.3. Some of

these techniques are inherently more suited to hardware implementations. Section 2.4

introduces the paradigm of hardware-based algorithms along with the advantages and

problems associated with such systems. To provide context for results in Chapter 4,

Section 2.5 reviews recent literature pertaining to hardware implementations of stereo

correspondence algorithms.

4

Chapter 2. Background 5

2.1 Scene and Camera Modeling

2.1.1 Reflectance

Ultimately, the goal of a computer vision system is the interpretation of an imaged

scene. In order to perform any kind of interpretation, some understanding of the visual

environment is necessary, at least at a macroscopic level. Such an environment typically

consists of light sources and sinks. Sources emit rays of light that travel in straight lines

until they encounter some obstacle. The power or intensity of the light emitted is denoted

by the term irradiance. As the number of rays passing through a given surface patch

increase, this intensity or power also increases.

Due to inherent spectral properties of an encountered object, certain wavelengths of

light are absorbed. These absorbed rays may then be re-emitted at the same or lower

energies. In the macroscopic world this absorbtion and emission of light is responsible for

the visualization of objects (i.e. certain frequencies of light reflected or re-emitted by an

object give it its characteristic colour or shape). Reflectance modeling provides a method

of predicting how light is absorbed and emitted by objects. Typically this reflectance is

roughly classified as specular or diffuse (see Figure 2.1). Specular reflectance describes

light re-emitted to generate a more mirror-like reflection with spectral distribution prop-

erties of the incoming (incident) rays being similar to those of the outgoing (reflected)

light. Diffuse reflectance refers to a scattering of reflected rays such that the spectral

distribution does not match that of the incident rays. This has the effect of making the

apparent brightness of a viewed object the same regardless of viewing angle. Modeling

the reflectance properties of objects provides a way to predict intensity patterns of the

resulting images taken by a camera system. These properties become particularly impor-

tant when discussing stereo matching — Section 2.3 provides a more detailed analysis of

this topic.

Chapter 2. Background 6

(a) Specular Reflectance (b) Diffuse Reflectance

Figure 2.1: A rough categorization of reflectance. Modeling reflectance properties of an
object is useful for predicting the way light enters a camera.

2.1.2 Single View Geometry: The Camera Model

Camera systems take snapshots of the light reflected by an object. It is common to model

such cameras using the pinhole camera model. Figure 2.2 presents a visual of this single

view model. Rays of light pass through a lense assembly and intersect with an imaging

patch or plane (Figure 2.2a). This patch takes the form of photographic film or digital

imaging sensors and records the spectral distribution of light at that particular location

in space. For mathematical convenience it is common to move the image plane in front

of the lense assembly as shown in Figure 2.2b. Furthermore, the lense assembly is also

typically replaced and modeled as a pinhole.

The value f represents the focal length of the camera lense while D represents the

depth or distance of the object. The focal length and depth measurements are typically

in world coordinates and relative to the camera centre, C. The optic axis of the lense

assembly passes through this camera centre at an angle perpendicular to the image plane.

Imaged data exists only in 2D (i.e. in image coordinates) and is relative to the intersection

of the optic axis with the aforementioned plane. The point of intersection is called the

principal point. The process of transforming the 3D visual information received by the

Chapter 2. Background 7

(a) A pinhole camera model (b) A modified pinhole
camera model

Figure 2.2: A pinhole camera model. Figure A shows the standard model while Figure
B shows a modified model with the image plane moved in front of the lense assembly.

camera into a 2D image is referred to as perspective projection. A point, P = (X, Y, Z),

on an object may be related to its perspective projection p = (x, y) by Equation 2.1.

Equation 2.1 can then be written as a system of equations in homogenecous coordinates

(with p̄ = [p | 1]T and P̄ = [P | 1]T) as shown in Equation 2.2. Note that λ = 1/Z and

that O3×1 is a zero matrix of size 3× 1.

− f
Z

=
x

X
=

y

Y
(2.1)

p̄ =


x

y

1

 = λ


−f 0 0

0 −f 0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





X

Y

Z

1


= λK [I3×3 | O3×1] P̄ (2.2)

The pinhole camera model is useful as a starting point for depth estimation algorithms

(see Section 2.2). However, while a useful guide, it deviates from real camera systems.

It also assumes that the alignment of the lense assembly is such that the optic axis is

Chapter 2. Background 8

perfectly perpendicular to the imaging plane — in reality, alignment of the assembly is

never exact and can thus result in skew distortions. Furthermore, the lense itself may

cause radial distortions to the incoming light. Light may fall unevenly on the image sensor

and result in scaling differences between x and y coordinates. Such uneven distribution

could, for example, be due to flaws or asymmetries in the lense assembly. Tangential

distortions are an example of such asymmetries.

Figure 2.3: Types of distortion resulting from the lense assembly. These distortions can
be accounted for by modifying the basic pinhole camera model.

To correct for these problems Equation 2.2 can be be modified with parameters that

represent these distortions. These parameters are known as the intrinsic parameters of

the camera. Equation 2.3 models these parameters. K forms what is known as the

camera calibration matrix with skew parameter, s, scaling factors, kx and ky and camera

principal point, (xc, yc). The function L(r̄) describes the radial distortion introduced by

the lense assembly as a function of the radius, r̄, relative to the principal point. Note that

tangential distortion is typically not a major contributor to distortion in the resulting

image and as such is omitted from the model.

p̄ = λ L(r̄) K [I3×3 | O3×1] P̄ = λ L(r̄)


kxf s xc

0 kyf yc

0 0 1

 [I3×3 | O3×1] P̄ (2.3)

Chapter 2. Background 9

The perspective projection is defined in terms of a camera centric coordinate system.

It is possible to move from these camera centric coordinates, P = (X, Y, Z), to world

coordinates, P̃ = (X̃, Ỹ , Z̃). A relationship can be defined by performing euclidean

transformations (rotation (R) and translation (T)) to align the two coordinate systems.

The parameters associated with this transformation form the extrinsic parameters of

the camera system and are defined by the matrix τ (see Equation 2.4). Equation 2.5

combines models for the intrinsic and extrinsic parameters into a projection matrix Pr.

P̄ =



X

Y

Z

1


=

 R T

0T 1





X̃

Ỹ

Z̃

1


= τ P̃ (2.4)

p̄ = λ L(r̄) K [I3×3 | O3×1] τ P̃ = Pr P̃ (2.5)

Other issues cannot be modeled explicitly with Equation 2.5. A perfect pinhole

aperture ensures an infinite depth of focus and perfectly sharp images on the image

plane — practical systems cannot ensure such focus resulting in images with blurred

edges. Additionally, recording mediums tend to be more sensitive to certain frequencies

of light than others. This means that the visual representation of the scene may differ

from the actual spectral information entering the camera. This same recording medium

also quantizes light information into discrete values at discrete sample locations, a process

which has associated quantization errors and aliasing problems.

Another particularly important form of error occurs when the recording medium itself

is susceptible to noise. This noise may be a result of the electronic properties of a CCD

or CMOS sensor for a particular pixel location. Sensors are often prone to producing

Chapter 2. Background 10

spurious data under certain lighting conditions. To correct for these forms of noise it is

common to apply image filtration techniques. Gaussian and median filtration are two

common forms of filtering used to smooth image data and improve signal to noise ratio.

These techniques have been applied in Chapter 4 to improve disparity estimation on

noisy inputs.

A more thorough review of theory associated with single view geometry and related

camera modeling can be found in work published by Hartley and Zisserman [10].

2.2 Two View Stereo Geometry

An image from a single camera (in a fixed position) cannot be used to perform the inverse

of the perspective projection, the transformation from 2D to 3D, without additional

information. This information may take the form of contextual knowledge (e.g. some

knowledge about how objects scale over distance). This additional knowledge, assuming

that object identification is possible first, provides constraints by which a particular

position in 2D image data may be related to depth. A somewhat simpler method relies

on two images of a particular scene from different viewpoints. With the second image it

is possible to reduce depth estimation to a problem of triangulation. This triangulation

relies on the fact that points in each of the two images can be identified as representing

the same 3D position. Figure 2.4a presents a typical binocular (i.e. two camera) stereo

vision system.

Each camera in the figure is represented by the pinhole camera model. The points

e1 and e2 are the epipoles of the camera system and are given by the intersection of the

baseline with the image planes of each camera. The baseline, itself, is defined as the line

segment that joines the principal points of each camera (i.e. as line (C1, C2)). B is the

length of this line segment. A quick review of scene geometry demonstrates that a point,

P = (X, Y, Z), projects on each camera at p1 = (x1, y1) and p2 = (x2, y2) such that the

Chapter 2. Background 11

(a) Generalized Stereo (b) Rectified Stereo Setup

Figure 2.4: A binocular stereo camera system.

pair lie on epipolar lines defined by (e1, p1) and (e2, p2) respectively. Furthermore, the

plane represented by these two lines is called the epipolar plane, π, and contains the

scene point and its corresponding projections in camera 1 and 2. Given a point in one

image, the epipolar lines define a region, in the other, within which the matching point

is expected to be found. Since the camera model is known, finding the corresponding

points in the stereo image pair for a given scene point, P , remains the greatest challenge

of triangulation, and hence, depth estimation. The search for finding matching pixel

correspondences can be reduced to a 1D search once the epipolar geometry is known.

This geometry, given by epipolar lines l1 and l2, can be determined by computing the

fundamental matrix F . For a given point in l1 the corresponding point can be found in l2.

Equations 2.6 and 2.7 define the epipolar lines. Note that p̄1 = [p1 | 1]T and p̄2 = [p2 | 1]

represent p1 and p2 in homogeneous coordinates. Likewise l̄1 and l̄2 are the epipolar lines

represented in homogeneous coordinates.

Chapter 2. Background 12

l̄2 =


F11 F12 F13

F21 F22 F23

F31 F32 F33




x1

y1

1

 = F p̄1 (2.6)

l̄1 =


F11 F12 F13

F21 F22 F23

F31 F32 F33



T 
x2

y2

1

 = F T p̄2 (2.7)

It is often useful to transform images obtained from the two camera systems to re-

flect this epipolar geometry more clearly. A process called rectification determines the

transformation between the two camera images such that their respective epipolar lines

are aligned parallel and colinear along a single axis (see Figure 2.4b). The rectification

process uses F to warp the camera images such that pixels along corresponding scanlines

are representative of matching epipolar lines. That is, rectification ensures that matching

pixels in the two images lie on the same scanline. In a nut shell, the fundamental matrix

encapsulates the intrinsic and extrinsic camera parameters such that Equation 2.8 holds

true. A calibration process, requiring several known P , p1, p2 point relationships, is re-

quired to determine this matrix. Relating Equations 2.5 and 2.8 it is clear that knowledge

of the fundamental matrix allows the computation of projection matrices, Pr1 and Pr2,

for each of the cameras in the stereo setup. It is important to note that the relationship

in Equation 2.8 holds true even if the two views are not rectified.

p̄2
TF p̄1 = 0 (2.8)

The values x1 and x2 allow disparity computation. The disparity of a particular pixel

pair is the displacement of the two pixels with respect to each other and relative to the

Chapter 2. Background 13

principal point of the images (i.e. d = |d2 − d1| = |x2 − x1| pixels). Make note that

this is possible because the principal points of the two images are aligned to the same

image coordinates after rectification. Depth of a 3D world point corresponding to the

matched pixel pair can be computed from the disparity and camera parameters using

Equation 2.9. f = f1 = f2 represents the focal length of the two rectified cameras while

B represents the length of the baseline, α a pixel/mm scale factor, d the disparity, and

D the depth.

D =
fBα

d
(2.9)

Clearly, disparity is inversely proportional to depth up to some scale factor. This

scale factor is determined by camera parameters. It is convenient to use disparity as

a unit of measure for 3D structure in a scene since it is independant of the particular

camera system being used for stereo imaging. This document will, therefore, use the

terms disparity and depth interchangeably to refer to 3D reconstruction results.

A more thorough review of theory associated with two view geometry and 3D recon-

struction may be found in work published by Hartley and Zisserman [10].

2.3 Stereo Matching

A stereo matching process is used to identify corresponding points in each of two 2D

images from a stereo camera system. Point correspondences, as mentioned earlier, pro-

vide a means to perform triangulation. Some form of cost function, likelihood function

or similarity metric is required to identify pairs of points across images that are good

candidates for matches.

Algorithms for determining correspondences have been studied extensively by the

computer vision community. This thesis focuses on image based algorithms which are

classified into dense and sparse methods. Sparse methods use some form of feature

Chapter 2. Background 14

matching (e.g. Corners, SIFT, etc.) to identify matching points in each view of the

stereo image. Disparity estimates for these matching points are used to generate sparse

depth maps. Some algorithms may then perform a region growing or filling operation to

propagate disparity estimates to neighbouring regions around the sparse points. These

methods can thus be used to generate dense maps also. Dense methods work at the pixel

level rather than the feature level but operate in much the same way as sparse methods

(as far as feature/pixel matching is concerned). Correlation window based matching is

quite common among matching algorithms. These methods compute a correlation score

between windows centred at a particular pixel or feature in each of the two images of the

stereo pair. For a given feature in one image the window slides over nearby coordinates

in the other image to produce similarity scores between the representative features. The

best scoring feature pairs are thus labeled as matches and a depth or disparity estimate

computed. It is important to remember that the rectification process provides an im-

portant step to reducing the search space over which cost estimates are generated and

makes the matching problem more computationally tractable. As mentioned earlier, this

is because it ensures that matching features in the two images lie on the same scanline. A

more thorough review of both sparse and dense methods is provided in a brief literature

review in Section 2.5. Furthermore, Figure 2.5 provides a visual flow diagram of how a

sparse or dense estimation approach may work.

Figure 2.5: A flow chart of sparse and dense disparity estimation. Features may be pixel
level or higher level features.

Chapter 2. Background 15

As an example, Equations 2.10, 2.11 and 2.12 describe three potential cost functions

that can be used for feature or pixel comparisons. Equations 2.10 and 2.11 describe

Sum of Squared Difference (SSD) and Sum of Absolute Difference (SAD) functions with

windows W1 and W2 containing camera 1 and 2 features/pixels p1 and p2. I(p) indicates

the intensity or magnitude of feature/pixel p. Equation 2.12 describes a Normalized

Cross-Correlation (NCC) based function that takes into account image statistics within

a window (i.e. the mean (µW1 , µW2) and the standard deviation (σW1 , σW2)).

CSSD =
∑

∀p1,2∈W1,2

(I(p1)− I(p2))
2 (2.10)

CSAD =
∑

∀p1,2∈W1,2

|I(p1)− I(p2)| (2.11)

CNCC =
∑

∀p1,2∈W1,2

(I(p1)− µW1)(I(p2)− µW2)

σW1σW2

(2.12)

2.3.1 Stereo Issues

Some important issues arise when performing stereo matching. The first of these issues

occurs when pixels or features are visible from one camera but not the other. The absence

of an expected feature indicates the presence of an occlusion in the scene. The absence

of points b and e in Figure 2.6 demonstrate occlusions in the right and left cameras

respectively. During stereo matching this occlusion could result in an attempt to assign

a depth estimate to a feature that has no corresponding point for triangulation. As such,

algorithms penalize the similarity metric to take the presence of occlusions into account

- this penalization could be done by adding a fixed occlusion cost to the metric. With

large baseline stereo cameras there may be situations where a significant percentage of

the scene visible in one camera will not be visible in the other.

A second issue occurs as a result of thin objects. A typical approach to stereo matching

Chapter 2. Background 16

assumes that certain ordering is preserved between neighbouring scene points and their

respective images. Consider a particular scene point which generates corresponding image

points, p1 and p2, as a result of perspective projection. Suppose, now, that a narrow

object were positioned close to the stereo camera system at some central location. This

thin occluder imaged in camera 1 might generate an image point, p̌1, to the left of p1

while generating an image, p̌2 to the right of p2 in camera 2. In effect neighbouring points

p̌1 and p1 in image 1 occur in the reverse order to neighbouring points p̌2 and p2 in image

2 thus violating the ordering assumption. The ordering of these points in the presence

of a thick occluder, however, is not reversed.

Cameras in a stereo setup may not be equidistant from a particular object. Alter-

natively differences in magnification between the two cameras may exist. This means

that the resulting images, in the two views, can show scale variations with respect to

each other. These scale changes can adversely effect feature detection and subsequent

stereo matching. Scale changes are a significant issue and may result in a loss of detail

or other distortions. Another issue occurs in regions of low texture. Most feature detec-

tion algorithms make use of image gradients. Notable exceptions use image statistics via

histograms, correlation windows etc. In regions where there is very little texture gradi-

ent estimates tend to be extremely inaccurate resulting in poor quality depth estimates.

Likewise, pixel intensity comparisons yield similar cost values for locations along an un-

textured region, which, in turn, yield potentially incorrect depth assignments. Highly

textured regions or points of discontinuity (resulting from object boundaries) yield good

estimates. Uncorrelated noise can also yield wildly varying gradients in a local neigh-

bourhood. A common assumption treats this noise as normally distributed and models

it into the cost function.

A further issue relates to changes in illumination across cameras. The scene lighting

and camera positioning might be such that the resulting image pairs have widely varying

illumination effects. These effects could, for example, introduce shadowing, which, in

Chapter 2. Background 17

turn, could confound the matching process and generate spurious disparity estimates.

Images may also have differences in exposure causing further problems — exposure vari-

ations may be decreased through image normalization. It is worth noting that objects

may also have varying opacities. These set of semi-transparent objects layered one on

top of another can cause apparently un-correlated changes in image intensities in each

distinct stereo viewpoint. The result is further correspondence problems.

A final issue returns back to reflectance modeling. Specular characteristics of objects

have profound impact on disparity estimation. Light reflected off of such objects trans-

mits information about the illuminating light source. For partially specular surfaces,

some information about the material properties of the object are also transmitted. The

intensity of the imaged points associated with the particular specularity are dependant

upon one or more light sources at unknown positions in 3D space. In situations involving

two or more cameras, each camera will view objects from slightly different viewpoints

or angles — the position of the specularity present on the object will change relative

to the position of the actual underlying object between these different views. Specular-

ity may thus contradict two key assumptions that most matching processes make, i.e.

the assumption that surfaces are lambertian (or diffusely reflective) and that ordering of

points along an object remain the same between the two views.

2.3.2 Dynamic Programming Based Correspondence

In addition to the epipolar line constraints disussed earlier, further constraints and as-

sumptions can be imposed upon the stereo correspondence search process. The first set

of constraints is to assume that all objects in a scene are thick, opaque and lambertian

(i.e. diffusely reflective) — the last two assumptions, in a sense, avoid the necessity for

dealing with the more complicated aspects of reflectance modeling. An additional set of

more formalized constraints are as follows:

Chapter 2. Background 18

• Ordering Constraint: The order of neighbouring correspondences on the particular

epipolar lines is always perserved.

• Uniqueness Constraint: Each pixel or feature in one image only maps to one pixel

or feature in the other image. A violation of this rule can be used to identify

occlusions or outliers.

• Disparity Range Constraint: Corresponding pixels or features in one image can be

found within some limited distance in the other. This range can be predicted from

camera geometry and the location of the closest scene point.

Figure 2.6 provides a graphical description that demonstrates that these constraints

hold true given opacity and thick scene objects. Points from an object will map to points

in the camera images in a fixed order. Likewise, a point in one image will correspond

uniquely to another point in the other image — these correspondences will occur within

a fixed maximum pixel distance of each other.

Combined, these constraints provide limitations on cost computations. Once cost val-

ues are computed, the pixel distance between feature pairs corresponding to the minimum

cost becomes a measure for the disparity estimate. In order to compute the parameters

(i.e. the features or pixel pair) that minimize this cost some form of optimization must

take place. This thesis focuses on a dense disparity estimation technique based on a

Maximum Likelihood Dynamic Programming (DPML) optimization approach originally

developed by Cox et al. in [4].

Dynamic programming solutions attempt to minimize computational load during op-

timization. They utilize three key principles: overlapping subproblems, optimal sub-

structure and memoization. If a problem can be broken down into a set of subproblems

which can then be reused several times, it is said to have overlapping subproblems. If

each of these subproblems can then be shown to be the optimal solution within the scope

Chapter 2. Background 19

Figure 2.6: Ordering and uniqueness constraints. Points on the object map to the left
and right cameras uniquely and in order. Notice that point e is occluded in camera 1
while point b is occluded in camera 2.

of its inputs, then the larger problem is said to have optimal substructure and provides a

globally optimal solution. Furthermore, reuse is facilitated by mapping results to a mem-

ory indexed by the input space of the subproblems, much like a Look-Up-Table (LUT).

This mapping process is called memoization.

For cases of dense disparity estimation these three principles can be utilized by re-

lating the stereo matching process to a problem of determining the Longest Common

Subsequence (LCS). The corresponding scanlines in the left and right images can be seen

as a two distinct sequences, IL and IR. The set of matches for these two scanlines is the

longest common subsequence. DPML is a solution to the LCS problem. The optimal

substructure of DPML solutions means that the disparity estimation results generated

from input scanlines are globally optimal. Furthermore, the simplicity of cost computa-

tions, combined with the ability to reuse previous costs, lends this solution to easy and

high performance implementation. The DPML solution consists of a two pass algorithm:

the forward and backward pass. The forward pass occurs first (see Algorithm 1). Right

Chapter 2. Background 20

and left image pixel streams, from corresponding scanlines, are fed in and compared

sequentially to each other up to some maximum disparity range, Dmax.

NOC(IL(x), IR(x+ d), σ) =
(IL(x)− IR(x+ d))2σ2

4
(2.13)

OC(Pd, σ
2, φ) = log

Pdφ

(1− Pd)

√
2π

σ2
(2.14)

Pixel comparisons produce cost estimates for a search region constrained by Dmax.

Costs are generated by comparing every pixel in the left scanline to every pixel in the right

scanline. Equations 2.13 and 2.14 describe the cost functions used for pixel comparisons.

IL(x) and IR(x) are pixel values at position x in a scanline, while d is a disparity within

range: 0 to Dmax−1. σ2 represents the variance associated with camera sensor noise. Pd is

the probability of each camera imaging a point in the scene, while φ is the associated field

of view. Generally the values Pd, φ, and σ2 may be fixed since they model the physical

properties of the imaging system and scene. Please refer to [4] for further details.

To develop a more intuitive understanding consider the two corresponding scanlines

from the toy example in Figure 2.6. Every pixel in the left scanline is compared to every

pixel in the right scanline using Algorithm 2 - this is a simplified version of Algorithm

1. The lengths of the longest common subsequence resulting from comparisons between

IL(l) and IR(r), in Algorithm 2, are stored into a cost matrix (CM) as shown in Figure

2.7. A backward pass through the constructed cost matrix is used to determine the

LCS and hence the set of point correspondences. These correspondences can be used to

construct the disparity map, disp., relative to the left scanline.

Returning to Algorithm 1, after cost values for all pixel locations are stored in an

N by N cost matrix, CM , the backward pass initiates (see Algorithm 3). During cost

computation a match matrix (MM) stores indices indicating the presence of occlusions

Chapter 2. Background 21

Algorithm 1 Forward pass algorithm for a DPML stereo correspondence formulation de-
veloped by Cox et al. [4]. This algorithm is a modified formulation of the LCS dynamic
programming solution. Note that OC is a constant computed from camera and sensor pa-
rameters (Equation 2.14). NOC is a non-occlusion cost computed from an SSD-like function
(Equation 2.13) which compares left and right input pixels. CM and MM represent cost and
match matrices respectively. Note that the algorithm is written in MATLAB-like notation.

1: % Initialize match and cost matrices
2: for c = 1 to N do
3: MM(c, 1 : c) = 2;
4: MM(c, (c+ 1) : N) = 1;
5: CM(c : N, c) = (((c− 1) : (N − 1)) ∗OC);
6: CM(c, c : N) = (((c− 1) : (N − 1)) ∗OC);
7: end for
8: % For each pixel in a row compute NOC
9: for l = 2 to N do

10: for r = l to (l −Dmax) do
11: min1 = CM(r − 1, l − 1) +NOC;
12: min2 = CM(r − 1, l) +OC;
13: min3 = CM(r, l − 1) +OC;
14: CM(r, l) = min(min1,min2,min3) = cmin;
15: if min1==cmin then
16: MM(r, l) = 0; % No occlusion
17: else if min2==cmin then
18: MM(r, l) = 2; % Right occlusion
19: else if min3==cmin then
20: MM(r, l) = 1; % Left occlusion
21: end if
22: end for
23: end for

Algorithm 2 A simplified forward pass algorithm used to generate costs for the toy example
shown in Figure 2.6. An initialization phase occurs before this algorithm begins. A backtracking
phase occurs after this algorithm finishes execution. Note that the algorithm is written in
MATLAB-like notation.

1: % For each pixel in a row compute the length of the longest common subsequence
2: for l = 1 to N do
3: for r = l to N do
4: if IL(l) == IR(r) then
5: CM(r, l) = 1 + C(r − 1, l − 1); % No occlusion
6: else
7: CM(r, l) = max(CM(r − 1, l), CM(r, l − 1)); % Occlusion
8: end if
9: end for

10: end for

Chapter 2. Background 22

Figure 2.7: Constructing the cost matrix (CM) for an LCS solution to scanlines imaged
by the toy example in Figure 2.6. Cost values are computed according to Algorithm 2
for this toy example. A globally optimal solution for the set of point correspondences
between left and right scanlines is determined by backtracking through this cost matrix.
These set of point correspondences can then be used to construct the disparity map
(disp.). Note that X marks an occlusion.

Chapter 2. Background 23

occuring between the two subsequences defined by corresponding scanlines. The back-

ward pass backtracks through this matrix computing the shortest path that minimizes

the cost values. The left and right pixel locations corresponding to points along this

shortest path are used to compute the disparity or to indicate occlusion. Note that N is

the number of pixels in an image scanline.

Algorithm 3 Backward pass algorithm for a DPML stereo correspondence formulation de-
veloped by Cox et al.[4]. This formulation is a modification of an LCS solution. The algorithm
is written in MATLAB-like notation.

1: p = N ; q = N ;
2: while p 6= 1 and q 6= 1 do
3: if MM(p,q)==0 then
4: DISP (q) = abs(p− q);
5: OCC(q) = 0;
6: p−−;
7: q −−;
8: else if MM(p,q)==1 then
9: OCC(q) = 1;

10: p−−;
11: else if MM(p,q)==2 then
12: OCC(q) = 1;
13: q −−;
14: end if
15: end while

2.4 Custom Hardware

Software solutions to 3D reconstruction problems tend to be slow. General purpose pro-

cessors, while excellent tools, tend to have large overheads and limited facilities for the

finer grain and customized parallelization required by image processing applications. As

Chapter 4 will show typical computer systems have trouble producing depth estimates

at high frame rates. Custom hardware solutions for the same software algorithms pro-

vide an alternative approach that promises substantial speedups of up to 200 fps. This

improvement is achieved in two ways: by parallelizing computations to process multiple

Chapter 2. Background 24

pieces of data simultaneously and by pipelining to maximize throughput of computations

over multiple pixels, scanlines or frames.

Common approaches towards the design of these custom hardware solutions take the

form of Application Specific Integrated Circuits (ASICs) or Field Programmable Gate

Arrays (FPGAs). ASICs utilize Very Large Scale Integration (VLSI) to fit thousands of

transistor based circuits into a single integrated package (see Figure 2.8). It is convenient

to think of these individual transistor based circuits as encoding some sort of underlying

digital logic via switching behaviour. A key problem with ASIC hardware implementation

is the long development cycle required to get from an initial design to the finished product.

Likewise, specialized expertise and tools required for the design and implementation of

these ASICs come with a very large price tag. Changes required at the design phase can

thus also become very time consuming and costly. FPGA systems were first introduced to

provide fast and cheap prototyping facilities for eventual ASIC implementations. These

FPGAs are constructed as a set of interconnected reconfigurable logic blocks as shown

in Figure 2.9. Modern day FPGA systems have evolved to also utilize embedded ASIC

hardware in the form of Digital Signal Processing (DSP) blocks — embedded processors

have also become quite popular DSP blocks. This hybridization has come hand in hand

with the use of FPGAs directly in commercial products.

The major advantage of FPGA systems lies in their high reconfigurablity. This re-

configurability allows testing of a wide range of different designs quickly and cheaply.

Furthermore, field deployed FPGA systems can be updated with new hardware without

significant down time. This added flexibility comes at a price. To provide reconfigurabil-

ity logic cells/blocks consist of Look-up-tables (LUTs), Multiplexers (MUX), Flip flops

(FF) and gates. Each of these add logic delays that are not typically present in ASICs.

Additionally, routing between these logic cells is provided by an interconnect bus and

routing logic. This means that routing delays tend to be larger than equivalent ASIC

implementations also. ASICs can thus be clocked at significantly higher speeds than their

Chapter 2. Background 25

Figure 2.8: A die for an ASIC implementation of the AMD Barcelona Microprocessor.
Image courtesy of the AMD Corporation website (http://www.amd.com).

(a) FPGA Architecture (b) Logic Cell Architecture

Figure 2.9: A highly simplified example of (a) an FPGA architecture and (b) its internal
logic cell architecture.

Chapter 2. Background 26

FPGA counterparts. Furthermore, the additional logic means that FPGA implementa-

tions have higher power consumption and larger surface areas than their ASIC counter

parts. Recent FPGA designs try to balance reconfigurability with high speed logic by

implementing DSP blocks.

This thesis develops a hardware solution, DPMLHW, for the DPML stereo correspon-

dence algorithm discussed in Algorithms 1 and 3. While this solution utilizes an FPGA

system for implementation, it is clearly possible to migrate to ASICs for improved per-

formance. A discussion of this topic will follow in Chapter 4.

2.5 Literature Review

2.5.1 General Stereo Correspondence

The problem of depth estimation has been extensively studied by the computer vision

community. Detailed reviews of existing algorithms for stereo correspondence have thus

also been published by a number of researchers. Gong et al. [7] provide an overview

of general stereo correspondence approaches. These approaches can take the form of

sparse (feature based), dense, volumetric or level-set algorithms. Furthermore, while this

chapter has implied two view stereo, some methods for stereo correspondence generate

depth estimates using multiple views. Seitz et al. [25] provide a review of these multi-

view reconstruction methods. Earlier it was noted that rectification can simplify depth

estimation. Image registration techniques can be applied to determine the transformation

matrices normally estimated by rectification during calibration. These techniques also

utilize sparse, feature based estimation of correspondences and are discussed by Zitova

et al. in [30].

DPML is a global dense disparity estimation algorithm — Scharstein et al. [22] and

Brown et al. [2] provide extensive discussions and comparisons of similar dynamic pro-

gramming approaches to other dense stereo correspondence algorithms. These compar-

Chapter 2. Background 27

isons demonstrate that dynamic programming provides accurate estimates that compete

well even with the best of existing methods. It is seen, however, that graph cuts and

belief propogation algorithms provide significantly better performance. These solutions,

sadly, are not suitable for high speed disparity estimation due to their computational

complexity — this complexity results in computation times in the seconds range for a

single image frame (see [27]). Closely related to the studies by Scharstein and Brown, Lu

et al. [16] provide a further survey on cost aggregation and make note that dynamic pro-

gramming approaches, being global methods, are not adequate for real time performance

and should be substituted by local cost optimization. This thesis demonstrates that hard-

ware implementations of dynamic programming based stereo correspondence can achieve

real time performance. The next section reviews current hardware approaches to dense

disparity estimation.

2.5.2 Hardware Based Stereo Correspondence

In section 2.4 it was noted that hardware solutions to the stereo correspondence problem

show the potential for improved frame rate performance. This thesis demonstrates that

significant speedups can be achieved resulting in disparity estimates generated at up to

200 fps. It is prudent to examine existing hardware implementations for 3D reconstruc-

tion so as to provide context.

By far the most common approaches towards hardware depth estimation are based on

correlation or area based methods. Of these, the most common methods make use of SAD

aggregated cost functions applied to pixel intensities. As shown by Scharstein et al. in [22]

SAD correlation approaches do not provide very accurate disparity estimates. Typically

these SAD implementations make use of line buffering (via First In First Out (FIFO)

buffers) to align pixels in left and right images of a stereo pair for parallel windowing

computations. Works by Miyajima et al.[20], Hariyama et al. [9], Perri et al. [21], Mitéran

et al. [19] and Han et al. [8] all utilize this buffering. Miyajima et al. [20] introduces a

Chapter 2. Background 28

method which provides occlusion detection by computing costs using first one and then

the other viewpoint as a reference. This method implements what is known as the left-

right consistency constraint. The costs associated with windows are fed into a comparator

tree to extract the match with minimum cost. Both Perri et al. [21] and Mitéran et al.

[19] observe that neighbouring windows of SAD computations use many of the same

values. These values are stored and re-used as required. Hariyama et al. [9] defines two

levels of parallelism, one at the pixel level for absolute difference computations within a

window and another at the window level for comparisons across windows. Progressively

windows are divided into smaller regions to perform coarse to fine refinement of disparities

within localized regions. Both Hariyama [9] and Simhadri et al. [26] utilize adder trees

to perform cost and comparison computations. The presented solutions appear to scale

proportionally with the disparity range with some solutions such as Hariyama et al. [9]

generating very large non-linear increases in hardware resources. It is worth noting that

adder trees are primarily useful in situations such as windowing — they do not typically

apply to dynamic programming type solutions. However, coupling the DPML solution,

presented earlier in this chapter, with area based correlation and introducing adder trees

can have the added result of improving performance for noisy images (see Chapter 4).

Most of these implementations produce results at approximately 30 fps. Hariyama et

al. [9] reports far better results, but resource utilization is so high that implementations

need to occur across multiple FPGAs. Han et al. [8] also reports better results of 60 fps.

Some proposed methods (i.e. Horst et al. [28], Jia et al. [14]) fail to make details of their

design clear.

Additional stereo correspondence methods use phase based correlation. Dı́az et al.

[6], Darabiha et al. [5] and Masrani et al. [18] provide examples of these approaches im-

plemented in hardware. These methods use gabor filters to model retinal cell responses.

Like SAD approaches line buffers are used to facilitate parallel computations. Phase

based methods have the advantage of producing significantly better results than SAD

Chapter 2. Background 29

algorithms obtaining results that compete well with dynamic programming solutions.

The problem with these methods lies in the square root computations required — these

computations are difficult to implement in hardware and come with an associated high

resource cost, especially when implemented in parallel. Both Darabiha et al. [5] and Mas-

rani et al. [18] provide an implementation that uses multi-scale Locally Weighted Phase

Correlation (LWPC). Gaussian pyramids provide a method for coarse to fine refinement

that cancels out erroneous matches. Further left-right consistency checks are used for

refining accuracy of disparity estimation results. Like SAD based implementations these

phase based approaches achieve approximate 30 fps performance. Dı́az et al. [6] demon-

strate an algorithm that achieves over 200 fps performance but does so by reducing the

search range to only four neighbouring pixels.

A final approach that produces very high frame rates (over 200 fps), on par with the

approach presented in this thesis, makes use of the census algorithm (see Woodfill et al.

[29]). The census algorithm computes costs within a pixel neighbourhood using the census

tranform — the transform essentially consists of bit-wise OR operations that transform

the image space into binary vectors compared according to their hamming distance. The

high frame rates and very simple computations associated with this approach come with

poor accuracy.

To date no hardware implementations of dynamic programming type algorithms have

been explored by the vision community. Furthermore most existing solutions produce

relatively low frame rates of approximately 30 fps at resolutions that are typically lower

than 640 × 480 pixels. They achieve higher frame rates by sacrificing on accuracy, res-

olution or disparity search range. This thesis explores a dynamic programming solution

that achieves high frame rate performance with no compromise on accuracy and limited

compromise on disparity search range or resolution. The solution provides good scaling

characteristics relative to SAD and phase based correlation approaches.

Chapter 2. Background 30

2.6 Summary

A dynamic programming method, DPML, is presented as a solution for problems of dense

3D reconstruction. Dense algorithms require some sort of camera and scene modeling

to constrain the search space and make computations tractable. Reflectance modeling

and the pinhole camera model introduce some basic principals for understanding how to

setup these constraints. These models can be extended to two view stereo imaging and

the idea of perspective projection used to introduce epipolar geometry. This epipolar

geometry, in-turn, generates constraints that reduces the problem of finding pixel corre-

spondences for disparity estimation to a 1D search problem. A rectification process can

provide techniques for warping images, in each view, to align epipolar lines and simplify

this search. Pixel comparisons for this search, however, must still utilize effective cost or

similarity metrics. SSD, SAD and NCC are examples of common cost functions utilized

for determining the likelihood that a pair of pixels correspond to the same 3D world

point. Dynamic programming, furthermore, provides a method for finding a minimum

cost among sets of these pixel-pair costs. It is interesting to note that dynamic program-

ming is particularly suited to hardware implementations. Implementations of DPML

algorithms can utilize available hardware logic for pipelining and SIMD type paralleliza-

tion. Typically this hardware is prototyped using an FPGA. However, to produce truly

fast stereo correspondence circuitry, ASIC designs can be more effective. Finally, it is

noted that existing hardware approaches for disparity estimation primarily utilize SAD

based correlation, an approach that has relatively poor accuracy. Barring some notable

exceptions, these existing hardware methods produces frame rates in the range of 30 fps.

In the next chapter, a method for hardware disparity estimation that utilizes DPML and

produces frame rates in excess of 200 fps is presented. It is noted that no such dynamic

programming solution has been attempted in hardware before.

Chapter 3

System Design

Chapter 2 discussed the general formulation of a dense stereo correspondence problem

from the perspective of geometry, search, dynamic programming and maximum likelihood

estimation. Moreover, it was noted that hardware implementations can take advantage of

the inherent SIMD nature of image processing thus allowing for high speed computation.

The challenge of producing high frame rate depth estimates, from the DPML perspec-

tive, then, lies in the ability to reformulate the general algorithm to take into account

inherent constraints imposed by hardware. These constraints necessitate the reduction of

algorithm complexity with respect to computational load and memory so as to optimally

utilize existing hardware resources.

In this chapter, Section 3.1 first begins with a brief presentation of a direct serial

hardware implementation, DPMLHW(S), of Cox’s DPML [4] algorithm shown earlier

in Chapter 2. Some of the short falls of this approach are discussed and an improved

approach for stereo computations proposed in Section 3.2. The section describes two

modified algorithms and hardware architectures, DPMLHW(P) and DPMLHW(PP), for

very high frame rate correspondence.

31

Chapter 3. System Design 32

3.1 Serial Architecture

Algorithms 1 and 3 in Chapter 2 describe the basic DPML algorithm used for stereo

correspondence. DPML is a two pass algorithm, consisting of a forward and backward

phase, which operates on a pair of rectified (left and right) input image pairs. The forward

phase computes local costs. These costs provide an estimate of the degree of similarity

between all possible matching pixel pairs extracted from a scanline in the input images.

This local cost is stored in a cost matrix of size N × N , where N is the width of the

scanline. During the backward phase, a minimum cost path is traced through the cost

matrix, CM, (via another matrix called the match matrix, MM) such that the set of

most likely pixel correspondences are selected for every pixel in the scanline. The pixel

distance between these correspondences is the set of dense disparity estimates (DISP).

Accompanying these depth estimates is a value, OCC, that indicates regions in the depth

map that are occluded and have no correspondences. This procedure is repeated over all

scanlines, M , in the stereo pair for a dense depth reconstruction for all pixel locations in

the original stereo image.

Given that pixel intensity (IR and IL) is generally a P = 8 bit value, the associated

cost (computed via Equations 2.13 and 2.14), can then be represented with C = 16 bits.

Likewise, only I = 2 bits are required to represent match indices stored in the match

matrix, since these vary between values: 0, 1 and 2. Since most FPGA systems have

significant memory limitations, it becomes important to minimize such utilization. In

particular, it is noted that for an N pixel scanline the cost matrix requires C×N2 bits of

memory and the match matrix requires I×N2 bits of memory. For full size input images

of width: N = 640 this would mean a total memory utilization of 7.37 megabits (Mb) —

an amount that comes close to exceeding memory resources on some FPGA devices.

It is observed that only the match matrix values need be stored for backtracking.

Furthermore, the cost computation at any particular pixel location only requires costs

from the previous two rows of the cost matrix. It is, therefore, possible to reduce mem-

Chapter 3. System Design 33

Figure 3.1: An observation of the structure of the cost matrix and associated writes in
the match matrix demonstrate that it is possible to reduce memory utilization.

ory utilization. Figure 3.1 demonstrates that cost matrix memory utilization can be

decreased to: C×2×N bits, thus reducing total utilization to 839.68 kilobits (Kb). This

reduced version of the cost matrix, CBUF, requires an updating process which preserves

the structure of the matrix over subsequent iterations. In order to do this, CBUF from

Figure 3.1 is updated as shown in Figure 3.2. Recall that l and r variables represent the

pixel positions under consideration in the left and right scanlines respectively.

Further observing the initialization of the cost matrix in Figure 3.3 it is seen that

the maximum disparity range, Dmax, can also be taken into consideration. In such a

scenario only cost values up to this range need be computed — all other cost values can

be estimated by the occlusion cost at the boundary (inita and initb) that delimits regions

outside the Dmax search zone.

3.1.1 System Overview

Figure 3.4 introduces a näıve approach, DPMLHW(S), towards a hardware implementa-

tion of Cox’s [4] DPML algorithm. The hardware incorporates the algorithmic changes

presented earlier in this section. Since forward and backward passes must be processed

separately and sequentially, the data path of the DPMLHW(S) implementation is di-

vided into two. The lightly shaded blocks represent the forward pass data path, while

Chapter 3. System Design 34

Figure 3.2: Retaining cost matrix structure in CBUF. An overview of step by step updates
to CBUF. At each step an additional row of the cost matrix is computed.

Figure 3.3: Retaining cost matrix structure in CBUF given a disparity range Dmax. The
left image shows the initialized cost matrix CM. The right image is a snapshot of CBUF
during processing of IR=2..N and IL=3.

Chapter 3. System Design 35

the darker blocks refer to the backward pass data path. Indices from Algorithms 1 and

3 have been shifted to start at zero in this implementation.

Stereo image data is first stored into off-chip memory by a camera system and sub-

sequently rectified (by RTBUF). During the forward pass a scanline from the rectified

image data is retrieved and stored in an image pixel buffer IBUF. This buffer contains

a set of counters that iterate through the particular scanline. Addresses generated by

these counters index into IBUF, retrieve 8 bit pixel intensities for the the current left and

right scanline and feed them into the NOC module. The NOC block then computes the

non-occlusion cost as presented by Equation 2.13 and Algorithm 1. The three resulting

16 bit cost values (min1, min2, and min3) are fed into MIN, a module that consists of

a set of comparators. The MIN module determines the minimum cost among the three

inputs along with the associated index. The index is stored in the match matrix buffer,

MBUF, and is used to determine the optimal cost path based on whether the current

pixel location is occluded. The computed minimum cost, from MIN, along with the

current pixel location, as represented by counters in IBUF, is used to generate address

and data for a write into the CBUF partial cost matrix.

Once all match matrix index values have been computed for a particular scanline, the

backward pass blocks in the DPMLHW(S) implementation are activated. In this phase,

the IBUF counters are disabled and counters from DISP used to backtrack from the

last written address of the match matrix (MBUF). The backtracking phase proceeds by

outputting the match index every clock cycle to the DISP unit. This unit computes the

disparity from the current internal counter values and writes it to the DBUF module.

When the DISP counters reach zero values the computations for all pixels in a scanline

are complete and the next scanline is retrieved for processing by IBUF.

Chapter 3. System Design 36

F
ig

u
re

3.
4:

H
ig

h
le

ve
l

ar
ch

it
ec

tu
re

fo
r

a
n
äı

ve
se

ri
al

h
ar

d
w

ar
e

im
p
le

m
en

ta
ti

on
of

th
e

D
P

M
L

al
go

ri
th

m
or

ig
in

al
ly

d
ev

el
op

ed
b
y

C
ox

et
al

.[
4]

.
T

h
e

b
la

ck
ve

rt
ic

al
b
ar

s,
ab

ov
e

ke
y

b
lo

ck
s,

m
ar

k
re

gi
st

er
s,

w
it

h
ar

ro
w

s
in

d
ic

at
in

g
th

e
se

ri
es

of
re

gi
st

er
tr

an
sf

er
s

th
at

o
cc

u
r.

Chapter 3. System Design 37

3.1.2 Discussion

The DPMLHW(S) hardware makes significant improvements over software implementa-

tions of the same algorithm. A specific comparison with other implementations can be

found in Chapter 4. Further optimizations, however, may be made to the hardware —

these optimizations are discussed below.

First, the serial implementation stores cost data associated with an entire scanline

(a spatial complexity of O(N)). It also stores match data for the entire space of solu-

tions (a spatial complexity of O(N2)). This is somewhat redundant especially given that

search only takes place over a limited disparity range, Dmax. It would be more efficient

to reduce the width of CBUF and MBUF such that only some fraction of the N memory

elements are required for disparity computations. Furthermore, FPGA systems contain-

ing specialized DSP blocks for RAM can reduce circuit delays and logic cell utilization.

An appropriate implementation of CBUF and MBUF can be made to utilize these DSP

units for fast memory access.

Second, the current implementation runs through a long initialization phase whereby

MBUF must be initialized completely. However, most of the initialization values are

overwritten by computed match indices during the forward pass. The only initializations

necessary occur at the boundaries of the matrix delimited by inita and initb in Figure 3.3.

These boundary initializations prevent the backward pass from backtracking beyond the

defined regions of the matrix. A saving of approximately N2 clock cycles can be achieved

with improvements to the matrix initialization process.

Third, DPMLHW(S) does not take advantage of the flexibility of custom hardware

implementations. The cost computations are identical operations that can be re-framed

in the SIMD context. Loops iterating through r = l to r = Dmax can be unrolled and

computations for the minimum costs (min1, min2, min3 and cmin) done in parallel

given that that initial three cost values: CM(r−1, l), CM(r, l−1) and CM(r−1, l−1),

from Algorithms 1 and 3, are available. The current implementation runs with a time

Chapter 3. System Design 38

complexity of O(N2) — this complexity could, thus, be reduced to O(N) with appropriate

parallelization. This speed up would come at the cost of logic resources, increasing the

utilization to some order proportional to Dmax.

Fourth, a long combinational path in DPMLHW(S) means low maximum clock fre-

quency (Fmax). A low clock frequency, in-turn, means that the speed at which pixels are

processed will be lower and hence frame rates at which depth values are generated will

also be lower. The longest path runs from the memory module IBUF to the memory

module CBUF. Inserting pipelining register at key points (i.e. at the output of NOC and

MIN) along this path breaks up this long path resulting in faster clock frequencies.

3.2 Parallel Architecture

By incorporating some of the improvements discussed in the previous section higher frame

rates than the DPMLHW(S) implementation can be achieved. As seen earlier, examining

the structure of the cost matrix (see Figure 3.5) demonstrates that a cost computation is

dependant upon three neighbouring costs. Computing cost values, for a particular pixel

pair, in a näıve manner (i.e. row by row in the cost matrix) would require the sequential

computation of costs for all previous contiguous elements in that particular row. This

serial computation can be avoided by computing cost values along anti-diagonals instead

[17].

Computations along a particular anti-diagonal are only dependant upon data from

adjacent elements in the two previous anti-diagonals. Thus the sequential delay normally

associated with the cost computations along a row in the cost matrix does not occur for

anti-diagonals. This suggests that as long as the previous two anti-diagonals are available

it is possible to compute all cost values along the current anti-diagonal simultaneously

(i.e. in parallel).

To facilitate parallel computation along the anti-diagonals, pixels from the left and

Chapter 3. System Design 39

Figure 3.5: Careful observation of the structure of the cost matrix demonstrates that it is
possible to parallelize cost computation. Three previous costs (dark grey blocks) located
in the two previous anti-diagonals are used to compute the current cost (black block).

right scanline of an image pair are fed serially into two AD element buffers, LBUF and

RBUF. Pushing data into these buffers causes pixel values to mesh in a manner consistent

with the particular anti-diagonal in the cost matrix. As shown by Figure 3.6 the width

of LBUF and RBUF is related to the disparity by: AD = Dmax/2 + 1, where the +1

refers to the one additional element at the inita or initb boundaries introduced in Figure

3.3. Odd and even anti-diagonals have boundaries on either the left (inita) or the right

(initb) sides of the LBUF and RBUF buffers respectively.

The dimensions of the partial cost matrix (CM → CBUF) can be reduced to 2×AD

elements and those of the partial match matrix (MM → MBUF) reduced to (Dmax +

2)×N elements — the dimensions of both matrices are thus proportional to Dmax.

Since cost computations occur in parallel, their corresponding match indices are also

generated in parallel. This requires that the match matrix be updated such that all

indices for a given anti-diagonal are written at the same time. Figure 3.7 demonstrates

the writing process. An entire anti-diagonal is written to the matrix in a single iteration.

For example, value E5 indicates writes associated with even anti-diagonal number five,

while value O6 indicates writes associated with the sixth odd anti-diagonal. For even

anti-diagonals, index values are written to row d = 2i and column p = r − i, where

Chapter 3. System Design 40

Figure 3.6: Parallelization requires buffers that recieve a serial pixel input stream. The
LBUF and RBUF align these pixels such that they line up as required for cost computa-
tions. This figure provides an example for the computation of cost values for anti-diagonal
5. The CBUF(new) data generated is pushed into CBUF1 and data from CBUF1 pushed
into CBUF0.

i is the the position of the index along the current anti-diagonal. Similarly, for odd

anti-diagonals, index values are written to row d = 2i − 1 and column p = r − i of

the match matrix (MBUF). The original match matrix, MM, from Algorithm 1 and 3,

required that all locations be initialized. MBUF only requires initialization of values

at the p = 1 and p = 2 boundary. Other boundary regions at d = 1 and p = N are

initialized during regular anti-diagonal cost computations or are never visited during the

backtracking phase.

Figure 3.7: Initialization structure and parallelization of match matrix writes.

Based on these observations a modified DPML algorithm can be developed. This

algorithm is divided into three phases: an initialization phase, a forward pass phase and

Chapter 3. System Design 41

a backward pass phase.

Algorithm 4 presents the initialization phase of the modified DPML algorithm. This

phase fills LBUF and RBUF such that they are aligned to compute the third anti-

diagonal of the cost matrix. Furthermore it ensures that CBUF is setup with cost values

for the first two anti-diagonals and that MBUF is initialized to avoid backtracking outside

the bounds of the match matrix. VBUF ensures that boundary regions at the limits of

the disparity range d ∈ [0, Dmax − 1] of LBUF and RBUF are marked as invalid and

appropriately updated with the boundary costs.

Algorithms 5, 6 and 7 present the forward phase of the modified DPML algorithm.

Continuing after initialization, left and right pixels are alternately pushed into the LBUF

or RBUF based on whether the current anti-diagonal is odd or even – in odd anti-

diagonals left pixels are pushed into LBUF and vice versa on even anti-diagonals. Cost

values are computed differently at distinct positions along an anti-diagonal. Values that

hit the boundaries inita or initb from Figure 3.6 are initialized to some multiple of the

occlusion cost OC. Valid and invalid indices further determine how cost values are com-

puted at other locations. It is important to remember that while cost computations

vary along an anti-diagonal, all positions are still computed in parallel. Match values

at the boundaries are generated to ensure that backtracking does not move beyond the

dimensions of the MBUF matrix. The forward pass completes, with back = 1, once all

AD = 2N − 1 anti-diagonals and their associated costs and match indices have been

computed.

Algorithm 8 presents the backward phase of the modified DPML algorithm. Like the

original implementation by Cox et al. [4], the backward pass algorithm remains much

the same. However, the variation in the match matrix structure presented in Figures 3.5

and 3.7 necessitates an alternate scheme for decrementing and incrementing the d and p

counters.

Chapter 3. System Design 42

Algorithm 4 Initialization phase for a parallelized DPML stereo correspondence formulation.
AD is the number of anti-diagonals, Dmax is the maximum disparity range and N is the number
of pixels in a scanline. OC is a constant cost computed based on camera and sensor parameters.
Note that this algorithm operates on a single scanline. Algorithm is written in MATLAB-like
syntax.

1: % Create left, right, valid buffers and initialize counters
2: AD = Dmax/2 + 1;
3: even = 1; back = 0;
4: new LBUF [AD], RBUF [AD], V BUF [AD];
5: new CBUF [AD][2], MBUF [Dmax + 2][N];
6:
7: % Push first pixel into buffers
8: l = 1; r = 1;
9: qPushLeft(LBUF ← IL(l)); l + +;

10: qPushRight(IR(r)→ RBUF); r + +;
11: qPushRight(0→ V BUF);
12:
13: % First initialization of MBUF and CBUF
14: MBUF [1...(Dmax + 2)][1] = [2, 2, ..., 2]
15: qPushLeft(CBUF [1...AD]← [0, 0, ..., 0]);
16:
17: % Fill up LBUF
18: while l ≤ AD do
19: qPushLeft(LBUF ← IL(l)); l + +;
20: qPushRight(0→ V BUF);
21: end while
22:
23: % Push final intialization pixels into buffers
24: qPushLeft(LBUF ← IL(l)); l + +;
25: qPushRight(IR(r)→ RBUF); r + +;
26: qPushRight(1→ V BUF);
27:
28: % Initialize match and cost buffers
29: MBUF [1...(Dmax + 2)][N] = [1, 1, ..., 1];
30: qPushLeft(CBUF [1...AD]← [OC,OC, ..., OC]);

Chapter 3. System Design 43

Algorithm 5 Forward pass algorithm for the parallelized DPML stereo correspondence for-
mulation. Algorithm is written in MATLAB-like syntax.

1: while back == 0 do
2: if even == 1 then
3: compute even % see Algorithm 6
4: else
5: compute odd % see Algorithm 7
6: end if
7: end while

Algorithm 6 Forward pass algorithm for computing even anti-diagonal costs for the paral-
lelized DPML stereo correspondence formulation. AD is the number of anti-diagonals, Dmax

is the maximum disparity range and N is the number of pixels in a scanline. OC is a constant
cost computed based on camera and sensor parameters. Note that this algorithm operates on
a single scanline. Algorithm is written in MATLAB-like syntax.

1: if even == 1 then
2: % Anti-diagonal boundary/invalid region cost computations
3: invalid = find(V BUF [1...AD] == 0) % Generate set of indices for invalid regions
4: C[AD] = CBUF [AD][1] +OC;
5: MBUF [2× AD][r − AD] = 2;
6: C[invalid] = CBUF [invalid][2] +OC;
7: MBUF [2× invalid][r − invalid] = 2;
8:
9: % Anti-diagonal valid region cost computations

10: valid = find(V BUF [1...AD] == 1)−1 % Generate set of indices for valid regions
11: min1[valid] = CBUF [valid][0] +NOC = costA;
12: min2[valid] = CBUF [valid][1] +OCC = costC;
13: min3[valid] = CBUF [valid+ 1][1] +OCC = costD;
14: C[valid] = min(min1[valid], min2[valid], min3[valid]);
15: MBUF [2×valid][r−valid] = min index(min1[valid], min2[valid], min3[valid]);
16:
17: % Shift computed cost values int CBUF
18: qPushLeft(CBUF [1..AD]← C[1...AD]);
19:
20: if r > N then
21: d = 2; p = N ; back = 1;
22: else
23: qPushRight(IR(r)→ RBUF); r + +;
24: if l ≤ N then
25: qPushRight(1→ V BUF);
26: end if
27: even = 0;
28: end if
29: end if

Chapter 3. System Design 44

Algorithm 7 Forward pass algorithm for computing odd anti-diagonal costs for the paral-
lelized DPML stereo correspondence formulation. AD is the number of anti-diagonals, Dmax

is the maximum disparity range and N is the number of pixels in a scanline. OC is a constant
cost computed based on camera and sensor parameters. Note that this algorithm operates on
a single scanline. Algorithm is written in MATLAB-like syntax.

1: if even = 0 then
2: % Anti-diagonal boundary/invalid region cost computations
3: invalid = find(V BUF [1...AD] == 0) % Generate set of indices for invalid regions
4: C[1] = CBUF [1][1] +OC;
5: MBUF [2× 1− 1][r − 1] = 1;
6: C[invalid] = CBUF [invalid− 1][2] +OC;
7: MBUF [2× invalid− 1][r − invalid] = 2;
8:
9: % Anti-diagonal valid region cost computations

10: valid = find(V BUF [1...AD] == 1) % Generate set of indices for valid regions
11: min1[valid] = CBUF [valid][0] +NOC = costA;
12: min2[valid] = CBUF [valid− 1][1] +OCC = costB;
13: min3[valid] = CBUF [valid][1] +OCC = costC;
14: C[valid] = min(min1[valid], min2[valid], min3[valid]);
15: MBUF [2×valid−1][r−valid] = min index(min1[valid], min2[valid], min3[valid]);
16:
17: % Shift computed cost values int CBUF
18: qPushLeft(CBUF [1..AD]← C[1...AD]);
19:
20: if l > N then
21: qPushLeft(LBUF ← 0);
22: qPushLeft(V BUF ← 0);
23: else
24: qPushLeft(LBUF ← IL(l)); l + +;
25: end if
26: even = 1;
27: end if

Chapter 3. System Design 45

Algorithm 8 Backward pass algorithm for the parallelized DPML stereo correspondence
formulation.

1: p = N ; d = 2;
2: while p > 0 and d > 0 do
3: if MBUF [d][p] == 2 then
4: if d == 0 then
5: DISP [p] = 0; OCC[p] = 1; d−−;
6: else
7: DISP [p] = 0; OCC[p] = 1; d+ +; p−−;
8: end if
9: else if MBUF [d][p] == 1 then

10: DISP [p] = 0; OCC[p] = 1; d+ +; p−−;
11: else if MBUF [d][p] == 0 then
12: DISP [p] = d− 2; OCC[q] = 0; p−−;
13: end if
14: end while

3.2.1 System Overview

Figure 3.8 introduces a highly parallelized hardware implementation of Cox’s [4] DPML

algorithm. The hardware incorporates the algorithmic changes presented earlier in Algo-

rithms 4–8. Two implementations of this hardware are considered: A partially pipelined

implementation DPMLHW(PP) and a fully pipelined implementation DPMLHW(P).

The distinction between the two lies in the presence of two additional components: PBUF

and BMUX which are used for finer grain pipelining. For clarity only DPMLHW(P) will

be discussed in detail. Like the serial implementation (DPMLHW(S)), DPMLHW(P)

consists of two separate data paths. Note that the lightly shaded blocks represent the

forward pass modules and the darker blocks represent backward pass modules. Further-

more note that for the sake of convenience the hardware shifts indices such that they start

at zero rather than one when compared to the parallelized algorithm presented earlier in

this section.

The modules labeled with the suffix BUF form the pipeline registers along which

data is transferred on consecutive cycles. The first of these registers, RTBUF provides

an interface to an external rectification module. Pixel data arriving from this module

Chapter 3. System Design 46

F
ig

u
re

3.
8:

H
ig

h
le

ve
l

ar
ch

it
ec

tu
re

fo
r

a
h
ig

h
ly

p
ar

al
le

li
ze

d
h
ar

d
w

ar
e

im
p
le

m
en

ta
ti

on
of

th
e

D
P

M
L

al
go

ri
th

m
or

ig
in

al
ly

d
ev

el
op

ed
b
y

C
ox

et
al

.[
4]

.
T

h
e

ve
rt

ic
al

b
la

ck
b
ar

s,
ab

ov
e

ke
y

m
o
d
u
le

s,
re

p
re

se
n
t

re
gi

st
er

s
w

it
h

ar
ro

w
s

p
oi

n
ti

n
g

in
th

e
d
ir

ec
ti

on
of

re
gi

st
er

tr
an

sf
er

op
er

at
io

n
s.

Chapter 3. System Design 47

is buffered into IBUF which aligns the input for parallel cost computations along an

anti-diagonal. The aligned data enters the PNOC unit which, in turn, computes a set

of parallel non-occlusion costs associated with the particular left and right IBUF pixel

outputs. Parallel PNOC costs pass through a pipeline buffer, PBUF, and onto the PMIN

module which computes the minimum cost and associated minimum match index for

each position in the parallelized anti-diagonal. Depending on the position along the anti-

diagonal, either a boundary cost or an actual cost must be chosen. The CMUX performs

this selection based on the current anti-diagonal position under consideration. From

CMUX, cost values and match index values are sent to CBUF and MBUF, respectively,

for storage. A combined CBUF output is also sent back to the PBUF pipeline register for

subsequent cost computations. Note that indexing counters ICNT are used to access raw

pixel data from a rectification module, RTBUF, and to write to the partial match matrix,

MBUF. BCMP performs comparisons on ICNT values to determine when a scanline has

been completely or partially processed.

Once all anti-diagonals for a particular scanline have been processed the backward

pass initiates. The MCNT counter unit generates addresses for MBUF by using MCMP

to compare the current match value to preset constants: 0, 1 and 2. Results of the

comparison yield an indication of whether to decrement or increment internal coun-

ters. Disparity and occlusion results also become available for the current match matrix

(MBUF) address. These disparity values are stored into DBUF for later retrieval by

an external tracking module TBUF. Note that the backtracking multiplexer, BMUX,

multiplexes values to address MBUF either from the forward pass pipeline or from the

backward pass counters.

3.2.2 Interfaces: Rectification and Tracking

The rectification (RTBUF) and tracking (TBUF) modules provide interfaces to impor-

tant external pre- and post-processing logic circuits. Rectification attempts to transform

Chapter 3. System Design 48

a pair of images such that search during stereo correspondence can take place along a

single scanline. However, this transformation can result in rectified images that contain

regions with no valid pixel data. The interface for RTBUF thus has an out of range

signal, oor, accompanying the data signals. After some initial latency, the rectification

module buffers enough pixels in a scanline and sends a start signal to initiate stereo corre-

spondence. The DPMLHW(P) hardware uses internal counters to address the particular

pixel locations in the left and right scanline stored in RTBUF.

Stereo correspondence generates depth maps that can then be used for tracking of

some 3D target. The DBUF module in the DPMLHW(P) implementation provides

an interface similar to RTBUF for tracking tasks. The tracking buffer, TBUF, may

request data explicitly from the stereo correspondence hardware after a scanline has

been processed (i.e. by requesting the previous scanline while the current scanline is

being processed in the forward pass). Alternatively, the TBUF module can snoop during

the backtracking phase to retrieve data as it is being generated by the match matrix

(MBUF).

Figure 3.9 provides a high level block diagram of how the current DPMLHW(P) stereo

correspondence hardware may be integrated into a larger hardware system. Please refer

to work by Kirischian [15], Islam [12] and Belshaw [1] for further details on hardware

image acquisition, rectification and tracking. Note that pre-filtering circuits can be added

to reduce the effect of noise in images acquired by a camera system.

3.2.3 Parallelizing Buffers

A set of five modified First-In-First-Out (FIFO) buffers provide a method for parallelizing

sequentially inputted pixel intensities entering the image pixel buffer, IBUF. Figure 3.10a

and 3.10b presents a schematic diagram of the IBUF and its internal FIFO buffers,

respectively. The LBUF and RBUF components are directly analogous to the buffers

discussed earlier in the parallelized algorithm presented in this section. Associated with

Chapter 3. System Design 49

Figure 3.9: Integrating stereo correspondence into a larger system — a high level block
diagram.

these buffers are three others: VBUF, OLBUF and ORBUF. These additional buffers are

used to keep track of boundary regions or other invalid regions in LBUF and RTBUF. The

buffers output data to a multiplexer, CMUX, for each position in the anti-diagonal and

select which of three boundary, invalid or actual cost/index values to select for storage

into CBUF. These values are analogous to signals: minb, mini, mina, indb, indi and inda

entering CMUX)

3.2.4 Memory Addressing

The ICNT and MCNT counters perform critical addressing functions. Figures 3.11a

3.11b present the schematic diagrams for these counter blocks, respectively. The outputs

of the ICNT unit are equivalent to variables r and l from the parallelized DPML algo-

rithm discussed earlier in Algorithms 4–8. These variables determine how data is pushed

into the internal right and left buffers of IBUF. Furthermore, ICNT address signals also

provide addressing for the rectification buffer (which feeds into IBUF) and addressing for

writes to the partial match matrix MBUF. Likewise, signals generated by MCNT corre-

Chapter 3. System Design 50

(a) Image Pixel Buffer (IBUF) (b) First In First Out Buffer (FIFO)

Figure 3.10: The schematic diagram for the image pixel buffer. (a) IBUF consists of a
set of FIFO buffers that mesh left and right input pixels to allow parallel computation of
cost values. (b) Modified FIFO buffers — these buffers allow for serial input and parallel
output and thus form an essential part of the IBUF.

spond to variables: d and p in the algorithm. These counters are used for backtracking

through the match matrix. The counters are either decremented or incremented based

on the current match value output by MBUF.

To facilitate state transitions between initialization, forward and backward passes,

ICNT signals are fed into a set of boundary comparators (BCMP) shown in Figure

3.12a. The MCMP comparators, in Figure 3.12b, provide control signals that determine

which decrement and increment operations should occur within the MCNT counter block.

These comparators also help assess when the d and p counters reach zero values (i.e. the

boundary regions of the match matrix) during backtracking.

3.2.5 Cost Computation

A core chunk of hardware logic is utilized by parallel cost computations. These compu-

tations make use of Equation 2.13 and a minimization function to generate appropriate

cost values. The occlusion cost, OC is hard coded into the hardware via parameter-

Chapter 3. System Design 51

(a) Image Pixel Counter (ICNT) (b) Match Counter (MCNT)

Figure 3.11: The schematic diagram for image pixel and match memory addressing coun-
ters. (a) ICNT is used to retrieve raw data and index the match matrix during the forward
pass. (b) MCNT is used to backtrack through the match matrix and to compute and
store disparity data.

izations. Figure 3.13a demonstrates the design of the parallelized NOC computation

module. Data from this module is fed through a pipeline register, PBUF, and inputted

into the PMIN minimization circuitry. Figure 3.14a presents this circuit. Multiplexers

in the PMIN module select the appropriate cost values (costA, costB, costC and costD)

and add them to the occlusion cost or non-occlusion cost. The minimum of the results

of the three additions is used as the actual cost (mina). Boundary and invalid regions

(minb and mini) along the anti-diagonals have a special cost associated with them also.

Selecting between the three cost values (mina, minb and mini) is done by the CMUX

module. Figure 3.14b and 3.13b show schematics of the CMUX module and its internal

MUX block respectively.

The multiplexed cost data from the CMUX module is inputted into the CBUF buffer.

A schematic diagram of the buffer is shown in Figure 3.15. CBUF stores two previous

Chapter 3. System Design 52

(a) Boundary Comparator (b) Match Comparator
(BCMP) (MCMP)

Figure 3.12: Schematic diagrams for comparators. (a) BCMP is used to determine end
conditions, using ICNT. The comparator output indicates the end of the initialization
phase as well as the completion of the forward and backward passes. (b) MCMP is used
to generate counter control signals for match matrix counter: MCNT.

Chapter 3. System Design 53

(a) Parallel Non-Occlusion Cost (b) Internal CMUX multiplexer (MUX)
Unit (PNOC)

Figure 3.13: Schematic diagram for the (a) Parallel non-occlusion cost unit, PNOC and
(b) CMUX internal multiplexer logic unit, MUX.

Chapter 3. System Design 54

(a) Parallel Minimum Unit (PMIN) (b) Cost Multiplexer (CMUX)

Figure 3.14: Schematic diagram for the (a) Parallel minimum cost computation unit,
PMIN and (b) Cost multiplexer, CMUX.

Chapter 3. System Design 55

anti-diagonals in a set of FIFO buffers (see Figure 3.10b). Input data from the PNOC

module (for the next set of cost computations) is sent into the pipeline buffer, PBUF,

at the same time that cost data from the current anti-diagonal becomes available for

storage into CBUF. On the following clock cycle this current cost data is stored into

CBUF. However, in order to make this data available for the next computation entering

the pipeline, it is necessary to route current computations directly into the PBUF regis-

ter from CMUX. A further discussion of pipelining follows later in this section.

Figure 3.15: A schematic diagram for the Cost Buffer (CBUF).

3.2.6 Match and Depth Computations

During the forward pass, index data is fed from CMUX into the match matrix, MBUF.

In order to prevent delays in data storage the match matrix is constructed with multiple

banks, whereby data from different positions along the anti-diagonal can be stored simul-

Chapter 3. System Design 56

taneously into all banks. The schematic diagram for the MBUF and its internal blocks

is shown in Figures 3.16 and 3.17. Write signals for the Multibank RAM are generated

via a decoder activated by the even and init signals. It is worth noting that subtractors

1 to AD are used to create appropriate addresses for each bank and its associated anti-

diagonal element. During the backward pass this windowing is disabled by setting the

forward signal to 0. It is important to observe that each bank is a synchronous RAM

block that requires one clock cycle for reads. This means that during backtracking there

is a one clock cycle delay before results from the placement of the next p counter address

are available on the match signal line. This is a significant problem since the next p (and

d) value is dependant on the current match output. This results in a one clock delay for

every match value retrieved from the match matrix during the backward pass. In order

to reduce this delay, to a small initial value of one clock cycle at the beginning of the

backward pass, a pre-fetching process is implemented via four multiplexers: A, B, C, D.

Table 3.1 demonstrates how this pre-fetching occurs for the first few clock cycles of

the backward pass. At the end of the forward pass paddr and daddr have values: N and

1 respectively. The pre-fetch takes a clock cycle, in state INIT, to extract the first match

index value at address p = N = 10 (multiplexer A) and p = N − 1 = 9 (multiplexer B)

from all banks (d = 0 to d = Dmax + 1) of MBUF. A second clock cycle, in state LOAD,

is used to output the first match value directly from memory via multiplexer A while at

the same time storing this value in register REGM. Finally for all remaining iterations

of the backward pass the match output is taken from multiplexers B, C and D. Recall

the following operations from the parallelized DPML algorithm: if match= 0, p − −; if

match= 1, d+ +; p−−; and if match= 2, d−−.

A disparity buffer, DBUF, is used to store data generated from MBUF. This buffer

stores the disparity value: d−1 as a representation of the distance between two matching

pixels at location p of the backward pass scanline. Figure 3.18 presents the architecture

of DBUF.

Chapter 3. System Design 57

Figure 3.16: A schematic diagram for the match matrix (MBUF).

Chapter 3. System Design 58

Figure 3.17: A schematic diagram for multibank dual port RAM used by MBUF.

Chapter 3. System Design 59

Signals Clock
0

Clock 1 Clock 2 Clock 3 Clock 4

paddr (p) 10 10 9 8 8
daddr (d) 1 1 1 2 1
regD X X 1 1 2
regM X X mA(10,1)=0 mB(9,1)=1 mC(8,2)=2
mA(p,d) X mA(10,1)=0 mA(10,1)=0 mA(9,1)=1 mA(8,2)=2
mB(p-1,d) X mB(9,1)=1 mB(9,1)=1 mB(8,1)=0 mB(7,2)=0
mC(p-
1,d+1)

X mC(9,2)=2 mC(9,2)=2 mC(8,2)=2 mC(7,3)=1

mD(p,d-1) X mD(10,0)=1 mD(10,0)=1 mD(9,0)=2 mD(8,1)=1

match X mA(10,1)=0 mB(9,1)=1 mC(8,2)=2 mD(8,1)=1

STATE INIT LOAD BACKTRACK BACKTRACK BACKTRACK

Table 3.1: A timing diagram for the MBUF during the first few clock cycles of the
backward pass. This diagram assumes that the width of the scanline is N = 10 pixels.
Note that a value of X indicates that the signal is not defined at the particular clock
cycle. Furthermore note that an example set of match values have been chosen as outputs
of MBUF.

3.2.7 Pipelining

The purpose of the pipeline is two fold. First, it provides a mechanism for reducing

combinational delay, which in-turn allows for increased circuit clock frequency. Second,

it allows micro/atomic computations (computations within an asynchronous block) to

occur much like they would in an assembly line thus increasing throughput at the cost

of a small initial delay required to fill the pipeline.

To better understand Figure 3.8, it is instructive to isolate the pipeline and observe

the data flow path as a series of register transfers along BUF elements (see Figure 3.19).

At each clock cycle a new pixel is pushed into the IBUF. AD costs are computed with

their associated match values stored in MBUF. Cost computations from a previous clock

cycle are re-used by looping back to PBUF. The PBUF register acts to reduce combi-

national delay (and hence, increase maximum clock frequency) by breaking down cost

Chapter 3. System Design 60

Figure 3.18: A schematic diagram for the disparity memory, DBUF.

Figure 3.19: The hardware pipeline. The forward pass takes place first, repeating until
cost computations for all pixels within a disparity range are completed. The backward
pass then proceeds to locate the minimum energy path to generate the final disparity
and depth results.

Chapter 3. System Design 61

computations into a non-occlusion cost (PNOC) and minimum cost selection (PMIN)

phase which together constitute the longest path. PNOC and PMIN together compute

AD cost values simultaneously using an assortment of adders, multipliers and compara-

tors. Since data in the forward pass and backward pass go through two distinct pipelines,

control signals must be routed via BMUX to ensure synchronization (see Figure 3.20).

3.2.8 State Machine

The state machine ensures that data is fed correctly through the pipeline (see Figure

3.21). The SKIP state fills the IBUF pipeline registers. During this filling process a

full anti-diagonal of pixel data may not be available. The buffer, VBUF, ORBUF and

OLBUF containing a list of valid pixels ensures that these boundary regions don’t affect

cost computations.

The AD EVEN and AD ODD states process data for even and odd anti-diagonals

respectively and ensure that the staggered alignment of previous anti-diagonals is ap-

propriately considered for boundary cost computations. The STALL state at the end of

the forward pass ensures that the last pixel computation has time to reach the end of

the forward pipeline. This is necessary due to the one clock cycle delay incurred when

initially transferring data into the PBUF.

During the backward pass, MBUF synchronous read operations have a one clock cycle

latency from the time that an index address from the p counter (signal paddr) is placed

on the address lines. The INIT state ensures that this latency is taken into account for

the first read operation. Since the next read address for the MBUF is determined by the

currently read data, it is necessary to pre-fetch the data for all potential next address

candidates. Without this pre-fetch, a one clock cycle penalty would be incurred for every

read operation executed on the MBUF. The LOAD and BACKTRACK states implement

this pre-fetch and compute disparity values for all pixel locations in the current scanline.

Chapter 3. System Design 62

Figure 3.20: A schematic diagram for the Backtracking Multiplexer (BMUX).

Chapter 3. System Design 63

Figure 3.21: The state machine for the pipelined hardware architecture shown in Figure
3.8. Dark states indicate the backward pass while light ones indicate the forward pass.

3.2.9 Discussion

The DPMLHW(P) hardware makes significant improvements over both software and

hardware implementations of stereo correspondence algorithms. A specific comparison

with other implementations can be found in Chapter 4. Further improvements can still

be achieved — these improvements are discussed below and have been denoted as the

DPMLHW(P)* and DPMLHW(P)** implementations.

First, as the number of parallelized units, AD, increases so does fanout. Relatively

few control and data signals end up driving a large number of computational units. The

large fanout requires signal boosting, while the large number of parallelized units result

in congestion on the particular FPGA device. The effect of parallelization, thus, is a

potentially increased routing delay and hence lower clock frequencies. Reconfigurable

logic tends to take up large surface areas. In comparison ASIC implementations gener-

ally take up less space. Some FPGA systems (such as the Xilinx Virtex 5) implement

ASIC versions of multipliers, adders and other components in the form of DSP blocks.

Chapter 3. System Design 64

Utilization of these DSP blocks can result in less congestion and likewise reduced routing

delays. Furthermore, ASIC logic delays tend to be lower. An implementation of the

DPMLHW(P) that utilizes appropriate DSP logic can run significantly faster.

It was noted earlier that the key difference between the partially pipelined imple-

mentation, DPMLHW(PP), and the fully pipelined implementation, DPMLHW(P) lay

in the presence of an additional buffer, PBUF, that performed finer grain pipelining.

This pipelining reduced the combinational delay by effectively reducing the longest path

between IBUF and CBUF. A reduced combinational delay, in-turn, meant a higher max-

imum operating clock frequency Fmax clk. Further and even finer grain pipelining of the

data path is possible by inserting registers within the PMIN and CMUX modules. The

methods used to perform this pipelining differ. Since a particular next cost computation

is dependant upon the results of a previous cost computation, the insertion of addi-

tional registers along the datapath will require halting the pipeline in order to make data

available for a loop back of cost data (costA, costB, costC, and costD) into PBUF.

A method known as architectural retiming [11] can be used to implement this addi-

tional finer grain pipelining by inserting negative registers that predict cost values for

the next cost computation before they have been completely computed in the current

pipeline cycle. These registers act as pipelining registers that send data backwards along

the pipeline. For example, the outputs of the adders in PMIN (Figure 3.14a) could

be used as a prediction of the next cost. Additional test circuitry that compares this

predicted cost to the actual cost can be added to restore the pipeline to its original

state in the event that the prediction turns out to be incorrect. An incorrect prediction

would thus result in a significant penalty to the overall speed of the circuit. The chal-

lenge with additional pipelining would then be to find a good predictor for the next cost

values entering PBUF. Chapter 4 provides quantitative estimates for the effectiveness

of a sample predictor that may be used for architectural retiming. Note that the ab-

breviation DPMLHW(P)* has been assigned to denote this hypothetical and improved

Chapter 3. System Design 65

implementation that takes additional pipelining and delay reduction into consideration.

Currently both backward and forward passes operate in a sequential manner. This,

however, need not be the case. The two phases themselves can be pipelined such that the

forward pass of the next scanline begins while backtracking is in progress. The difficulty

of pipelining in this manner lies in the fact that the forward pass writes data to increasing

indices of the match matrix while the backward pass iterates through the same matrix

in the opposite direction. As some point, the data overwritten by computations of the

next scanline, in the forward pass, will be required by the backward pass phase of the

current scanline. One method of storing this data is to use a double buffering scheme.

The scheme would make two copies of the match matrix such that at any given time the

forward pass would write to a different memory than that being used for backtracking.

A less resource intensive approach is also possible. Instead of duplicating the memory

associated with the match matrix, the forward pass can be made to write into the match

matrix in the reverse order that it would normally write. If this reversal lags behind

the backward pass such that it is always one p address value behind the backward pass

computations then no unused data will be overwritten. The next scanline backward pass

thus also proceeds in the opposite direction of the normal backward pass. Over the

course of M scanlines, the forward and backward passes then flip flop between writing

and reading the match matrix using reversed addressing and the normal addressing of

the current DPMLHW(P) implementation. This backward and forward pass pipelining

increases scanline throughput resulting in a net increase in the frame-rate of the stereo

correspondence system. Chapter 4 discusses the timing performance of this interleaved

DPMLHW(P)** implementation further.

Chapter 3. System Design 66

3.3 Summary

Two key hardware implementations for Cox’s [4] DPML algorithm are presented.

DPMLHW(S) presented a näıve sequential implementation, while DPMLHW(P) and

DPMLHW(PP) presented pipelined and parallelized implementations. The hardware

implementations attempt to optimize the speed at which stereo correspondence results

are generated. The DPMLHW(S) approach noted that the entire cost matrix did not

need to be stored for backtracking. However, computations for a particular position in

the cost matrix required the sequential computation of all other costs in that particular

row of the matrix. The DPMLHW(PP) approach went further and noted that anti-

diagonals in the cost matrix were dependant only on two previous anti-diagonals. This

suggested that AD parallel cost computations could be performed in a single clock cycle

resulting a significant improvement over the DPMLHW(S) implementation. Finally, the

DPMLHW(P) approach attempted to reduce combinational delay and hence increase

the maximum clock frequency at which the stereo correspondence circuit operated. A

pipelining register, PBUF, was introduced between the PNOC and PMIN module —

this register effectively increased clocking frequency by breaking up the longest path

from IBUF to CBUF registers. A backtracking multiplexer, BMUX, ensured that this

additional pipelining would not interfere with the addressing of the partial match matrix,

MBUF, during backtracking.

Finally, it was noted that further speed increases are possible if the DPMLHW(P) ar-

chitecture is modified to accomodate additional pipelines between the PBUF and CBUF

registers. These pipelines will, however, require a method to predict cost values, for sub-

sequent cycles, before the data in the current cycle has reached the end of the pipeline. A

method known as architectural retiming [11] is proposed for these future speed optimiza-

tions. Additional speed improvements are possible by utilizing FPGA DSP blocks or by

pipelining the backward and forward passes associated with the stereo depth estimation.

Chapter 4

Results and Discussion

This chapter provides a performance summary of the DPMLHW stereo matching system

discussed in this document. Section 4.1 begins with a discussion of the accuracy of 3D

reconstruction with respect to other stereo matching algorithms. A comparsion is made

not only to Cox’s DPML algorithm but also to SSD, Correlation and additional algo-

rithms compiled by Scharstein et al. [22][23]. Following this, Section 4.2 demonstrates

that the particular DPMLHW implementation presented in this thesis operates at vastly

superior frame rates to existing algorithms. Finally, Section 4.3 looks at the hardware

resource utilization and associated integration and timing concerns.

It is worth noting that the results presented were generated from standard stereo

data sets and quality metrics compiled and used by Scharstein et al. [22][23] as well as

data sets obtained from the actual 3D reconstruction system implemented in hardware

(DPMLHW). To function in a standalone manner, the hardware system can integrate

image aquisition circuitry and rectification logic developed by Kirischian et al. [15] and

Islam [12] respectively. A final point to note is that existing hardware was developed and

tested on a Xilinx Virtex 2 pro FPGA development platform.

67

Chapter 4. Results and Discussion 68

4.1 Accuracy

As noted earlier (in Chapter 2), most high speed stereo algorithms achieve high frame

rates at the expense of accuracy and resolution. In contrast, the DPMLHW implementa-

tion presented in this document demonstrates a comparable degree of accuracy to existing

matching algorithms. It is interesting to note that the DPMLHW implementation dif-

fers from many of existing hardware implementations. Existing implementations tend

to use simplistic SSD, SAD or other similar Correlation-based formulations that tend

to perform poorly during 3D reconstruction. Table 4.1 shows the ranking of disparity

estimates generated via hardware with respect to a list of existing algorithms compiled

by Scharstein et al. in [22][23].

The specific ranking for the hardware reconstruction were obtained from automatic

evaluation tools available from Scharstein et al. [24]. A complete list of rankings, for

comparison purposes, may also be found in [24]. Furthermore, results are compared

to ground truth data using root mean squared error and percent bad matching pixels

metrics. These metrics have been used extensively by the vision community to evaluate

stereo correspondence results and are likewise used by Scharstein et al. in [22] [23]. For

the sake of completeness they have been defined in Equations 4.1 and 4.2.

RMS =

√√√√√ 1

K

K∑
(x,y)

(Dest(x, y)−Dtrue(x, y))2 (4.1)

BAD =
1

K

K∑
(x,y)

|Dest(x, y)−Dtrue(x, y)| > δD (4.2)

Figure 4.1 provides a visualization of the specific data sets, ground truth disparities

and occlusions used for evaluating the accuracy of correspondence results. Figure 4.2

demonstrates some reconstruction results for Sum of Squared Difference (SSD) and Cor-

relation (CORR) algorithms, while Figure 4.3 demonstrates additional results for the

Chapter 4. Results and Discussion 69

DPML and DPMLHW implementations that are the focus of this thesis.

Figure 4.1: Tsukuba, Venus, Teddy and Cones data sets and their ground truths. Sub-
images A1-A4 show the left image acquired by the stereo camera system. Sub-images
B1-B4 and C1-C4 show ground truth disparity and occlusion maps respectively. These
standard data sets are used for evaluating accuracy of stereo correspondence results
[22][23][24].

4.1.1 Improving Accuracy

Upon examination of visual results it is noted that in contrast to the standard data sets in

which disparity estimation is shown to be quite successful, real world stereo images with

large amounts of uncorrelated noise tend to confuse the algorithm. This is demonstrated

in Figure 4.4 which presents images acquired from a high speed stereo camera designed

by Kirischian et al. [15] — the images contain uncorrelated or structured noise that

makes pixel comparison across the two views difficult. In order to minimize errors in 3D

Chapter 4. Results and Discussion 70

Algorithm Avg. Rank RMS Error
Tsukuba Venus Teddy Cones

DPMLHW 36.8 0.7400 1.1308 1.0658 1.1248
DPML 36.8 0.7400 1.1307 1.0658 1.1248
CORR 37.0 1.3607 1.0720 2.3884 2.1656
SSD 38.0 2.4551 3.7694 6.9529 5.3069

Algorithm Avg. Rank % Bad Pixel Match
Tsukuba Venus Teddy Cones

DPMLHW 36.8 2.8127 4.7524 3.4415 3.8386
DPML 36.8 2.8127 4.7520 3.4414 3.8384
CORR 37.0 6.0886 3.6928 8.9299 6.5164
SSD 38.0 12.3657 13.7543 27.2931 17.2437

Table 4.1: Accuracy rankings, root mean squared error and percent bad matching pixels
for four standard data sets from Scharstein et al. [22] [23]: Tsukuba, Venus, Teddy
and Cones. Note that accuracy rankings are determined by evaluation tools from [24].
Lower values indicate better performance. Also note that four algorithms are compared:
(1) DPMLHW, Dynamic Programming Maximum Likelihood in Hardware. (2) DPML,
Dynamic Programming Maximum Likelihood in software. (3) CORR, Correlation with
11 by 11 window size. (4) SSD, Sum of Squared Difference with 11 by 11 window.

Figure 4.2: Stereo correspondence results for Sum of Squared Difference (SSD) and
Correlation (CORR) algoritms. Sub-images D1-D4 refer to the SSD algorithm while
sub-images E1-E4 refer to the CORR algorithm.

Chapter 4. Results and Discussion 71

Figure 4.3: Stereo correspondence results for Dynamic Programming Maximum Likeli-
hood (DPML) and DPML Hardware implementations. Note that both the DPML and
DPMLHW algorithms are virtually visually indistinguishable. Sub-images F1-F4 show
the disparity estimates for the Tsukuba, Venus, Teddy and Cones data sets respectively,
while sub-images G1-G4 show the occlusion estimates.

reconstruction, pre-filtering of image data can improve performance. This improvement

is shown in Figure 4.5 and 4.6 where input images are smoothed using Gaussian and

median filters. It is worth noting that the system shown produces poor disparities only

as a result of high levels of noise — as noted by Figure 4.3 when this noise is relatively

low, disparity estimates are more accurate.

As mentioned in Chapter 2 differences in illumination between two camera views can

cause inaccuracies during depth estimation. Since the cost function in 2.13 is dependant

on pixel intensities these differences directly effect the cost value. Figure 4.4 suffers

from these illumination changes. Performing some form of image normalization can

alleviate errors resulting from variance in illumination as long as the image statistics

across both cameras are expected to be similar — this would not necessarily be true

for large baseline stereo cameras which may contain widely divergent image intensity

distributions. Performing this normalizing over localized regions may prove to be more

Chapter 4. Results and Discussion 72

Figure 4.4: Stereo correspondence results from the Dynamic Programming Maximum
Likelihood Hardware (DPMLHW) implementation presented in this document. Input
images were acquired by a stereo camera system developed by Kirischian [15]. Sub-
images H1-H3 show the input data, while sub-images I1-I3 and J1-J3 show the disparity
and occlusion maps, respectively.

Chapter 4. Results and Discussion 73

Figure 4.5: Stereo correspondence results from the Dynamic Programming Maximum
Likelihood Hardware (DPMLHW) implementation presented in this document. Input
images were acquired by a stereo camera system developed by Kirischian [15] and pre-
filtered using a 5 × 5 gaussian smoothing window. Sub-images K1-K3 and L1-L3 show
the disparity and occlusion maps respectively.

Figure 4.6: Stereo correspondence results from the Dynamic Programming Maximum
Likelihood Hardware (DPMLHW) implementation presented in this document. Input
images were acquired by a stereo camera system developed by Kirischian [15] and pre-
filtered using a 5 × 5 median smoothing window. Sub-images M1-M3 and N1-N3 show
the disparity and occlusion maps respectively.

Chapter 4. Results and Discussion 74

successful.

Modifications to the DPML algorithms, presented in Chapter 3, also hold the po-

tential for improved accuracy in noisy conditions. These modifications involve a hybrid

approach to dynamic programming which utilizes costs aggregated over a correlation

window. Hardware that utilizes adder tree like structures can then be used to provide

fast window summation for these windowed computations.

4.2 Speed and Timing

Performance may, additionally, be characterized by the frame rate at which stereo corre-

spondence results are generated by hardware. A summary of this runtime performance

is shown in Table 4.2 for maximum disparities: Dmax = 16 and Dmax = 128 and data

resolutions: M × N = 640 × 480 and M × N = 320 × 240 pixels. At frame rates of

FPS = 63 fps and image resolution of M ×N = 640× 480 pixels, the fully parallelized

DPMLHW implementation introduced in this paper vastly out-performs existing corre-

spondence algorithms. At slightly lower input image resolutions a significantly higher

frame rate of FPS = 248 fps is achieved, a speedup factor of over 200 when compared

to Cox’s DPML [4] software implementation and over 10 when compared to existing

hardware implementations.

Note that Table 4.2 shows timing results from four different implementations.

DPMLHW(P), DPMLHW(PP) and DPMLHW(S) refer to the fully parallelized, par-

tially parallelized and serial FPGA hardware implementations discussed in Chapter 3.

The Xilinx Virtex 2 pro FPGA development platform was used for these implementations.

DPML refers to a C language software implementation of the dynamic programming al-

gorithm (see Cox et al. [4]). The results for this DPML software were generated on a

computer system with 4 GB of physical memory and a quad core 2.66 Ghz Intel Xeon

processor running the Linux 2.6.18 kernel. Note that DPMLHW(P)* indicates results

Chapter 4. Results and Discussion 75

that may potentially be possible given that signal routing and logic delays, occuring in

DPMLHW(P), can be optimized - a Xilinx Virtex 5 implementation has demonstrated

that this is possible. Likewise, DPMLHW(P)** indicates the theoretical results of inter-

leaving backward and forward passes with respect to each other. A further discussion

regarding both the DPMLHW(P)* and DPMLHW(P)** implementations will follow to-

wards the end of this section. It should be noted that the variability in Fmax clk for the

DPMLHW(P) implementation is a result of routing delays generated due to increasing

parallelization. This Fmax clk was estimated using post-synthesis simulations.

Results show that the fully pipelined and parallelized architecture DPMLHW(P)

discussed in this thesis produces the highest frame rates at high resolutions and disparity

ranges. Note that in the case of DPMLHW, the listed frame rates are the worst case frame

rates given a maximum operating clock frequency, Fmax clk. On average, depending on

the incoming image data, performance may be significantly better than this worst case.

Equations 4.3 and 4.4 are the result of a timing analysis of the serial and pipelined

hardware implementations presented in Chapter 3. The equations listed provide worst

case estimates. In reality, the length of time taken by the backtracking phase is dependant

upon input data. The backward pass may take anywhere between N and 2N clock cycles

resulting in frame rates faster than this worst case.

FPSS =
Fmax clk

M(5N +DmaxN)
(4.3)

FPSP =
[(

4N +
Dmax

2
− 1

)
M

Fmax clk

]−1

(4.4)

A further comparison of the DPMLHW implementation relative to 10 other existing

FPGA hardware approaches is shown in Table 4.3. For the purposes of this comparison

a measure for the computational speed, in Depth Pixels per Second (DPS), will be used.

This metric can be used directly or after normalization (DPSN) with the clock frequency

Chapter 4. Results and Discussion 76

Algorithm Dmax Fmax clk Resolution FPS

DPMLHW(P)* 128 125 Mhz 640× 480 99.28
DPMLHW(P)** 128 80 Mhz 640× 480 123.85

DPMLHW(P) 128 80 Mhz 640× 480 63.54
16 100 Mhz 640× 480 81.16
128 80 Mhz 320× 240 248.20
16 100 Mhz 320× 240 323.75

DPMLHW(PP) 128 67 Mhz 640× 480 53.22
16 67 Mhz 640× 480 54.37
128 67 Mhz 320× 240 207.86
16 67 Mhz 320× 240 216.91

DPMLHW(S) 128 47 Mhz 640× 480 1.15
16 47 Mhz 640× 480 7.28
128 47 Mhz 320× 240 4.60
16 47 Mhz 320× 240 29.14

DPML 128 2.6 Ghz 640× 480 0.18
16 2.6 Ghz 640× 480 0.24
128 2.6 Ghz 320× 240 1.24
16 2.6 Ghz 320× 240 2.01

Table 4.2: A timing comparison of various DPML hardware and software implementa-
tions used to compute stereo correspondence. DPMLHW(P)* indicates results that are
possible if signal routing delay can be optimized — implementations on the Xilinx Vir-
tex 5 FPGA have shown this improved performance. Similarly DPMLHW(P)** indicates
speed improvements from pipelining of forward and backward passes with respect to each
other.

Chapter 4. Results and Discussion 77

of the system to yield a reasonable measure of performance — equations for computing

the DPS and DPSN are shown in equations 4.5 and 4.6. Furthermore note that the

table presents techniques for hardware disparity estimation that fall roughly into three

categories: SAD, Phase and Census transform approaches. As mentioned earlier, most

present day hardware disparity estimation techniques utilize SAD-like correlation.

DPS = N ×M ×Dmax × FPS (4.5)

DPSN =
N ×M ×Dmax × FPS

Fmax clk

(4.6)

There is a strong dependancy between frame rate and maximum clock frequency.

Maximum frequency (Fmax clk) is affected by routing and combinational delay. Routing

delay mainly derives from the time required for signals to propagate between compo-

nents. Combinational delay mainly derives from complexity of internal logic within a

component. Improperly connected components result in long routing delays which, ul-

timately, affect circuit speed. When logic utilization is high, routing becomes difficult.

It is, therefore, prudent to minimize utilization. These delays can be minimized by in-

troducing synchronous buffers (pipeline registers) between blocks of combinational logic

(Chapter 3). Table 4.4 demonstrates the longest path delays for each of the (P), (PP)

and (S) flavours of the DPMLHW hardware. Moving from serial to partial and complete

parallelization significantly reduces internal logic delays.

In the case of the DPMLHW(P) and DPMLHW(PP) implementations it is important

to note that high levels of parallelization can increase routing delays. These delays are

a result of duplicated logic elements (such as adders, comparators and multipliers) that

take up, on a unit level, large areas of the FPGA. The footprint of these elements forces

signal routing over longer and longer distances. Furthermore, another side effect of the

Chapter 4. Results and Discussion 78

Algorithm Dmax Resolution Fmax clk FPS DPS DPSN

DPMLHW(P) 128 640× 480 80 Mhz 63.54 2.477× 109 30.96
SAD MIYA 200 640× 480 40 Mhz 18.90 1.161× 109 29.03
SAD PERR 256 512× 512 286 Mhz 25.60 1.717× 109 6.01
SAD JACO 178 178× 146 158 Mhz — 1.400× 109 8.86
SAD JIA 64 640× 480 60 Mhz 30.00 0.590× 109 9.83
SAD SIMH 64 512× 512 100 Mhz 0.34 0.006× 109 0.06
CENSUS WOOD 52 512× 480 — 200.00 2.556× 109 —
PHASE MITE 20 256× 256 200 Mhz 25.00 0.032× 109 0.16
PHASE DIAZ 4 640× 480 65 Mhz 211.00 0.259× 109 3.98
PHASE MASR 128 640× 480 — 30.00 1.180× 109 —
PHASE DARA 20 256× 360 — 33.00 0.061× 109 —

Table 4.3: A comparison of frame rates and depth pixels per second of various existing
hardware implementations used to compute stereo correspondence. The prefix in front
of the algorithm name represents the underlying technique, SAD for Sum of Squared
Difference, CENSUS for the Census Transform, PHASE for Phase-based correlation and
DPML for Dynamic Programming. The suffix indicates the authors associated with the
implementation: MIYA - Miyajima et al.[20]; PERR - Perri et al. [21]; JACO: Jacobi et
al. [13]; JIA - Jia et al. [14]; WOOD - Woodfill et al. [29]; MITE - Mitéran et al. [19];
MASR - Masrani et al. [18]; DARA - Darabiha et al. [5].

Algorithm Path Routing Logic Total Fmax clk

DPMLHW(P) PBUF to CBUF 5.739 ns 6.726 ns 12.465 ns 80.22 Mhz
DPMLHW(PP) IBUF to CBUF 4.551 ns 10.158 ns 14.710 ns 67.98 Mhz
DPMLHW(S) IBUF to CBUF 8.048 ns 13.492 ns 21.540 ns 46.42 Mhz

Table 4.4: Longest path delays, in nanoseconds, for fully/partially parallelized and serial
hardware implementations of Cox’s DPML [4] algorithm. These paths are for hardware
synthesized at 640× 480 disparity resolution and Dmax = 128.

Chapter 4. Results and Discussion 79

increased parallelization is the presence of a few key signals that drive a large number

of parallelized inputs. These signals are said to have large fanouts — in order to drive

gates to which they are conected some form of signal boosting buffer must be inserted

at key points along the signal’s path. This buffering introduces further routing delays.

Inserting additional pipelining registers can help alleviate this problem. The variability in

the maximum clock frequency (Fmax clk) seen in Table 4.2 is a direct result of this routing

delay. When a small number of parallelized adder and multiplier units are generated, i.e.

when Dmax is small, routing delays are shorter (Fmax clk is high) and the signal has to

travel a shorter distance to reach all of the elements in the parallelized blocks. As the

level of parallelization increases the delays increase, resulting in a lower Fmax clk.

4.2.1 Improving Timing Performance

As seen in Table 4.4, a decrease in the logic and routing delay can increase clock fre-

quency. In order to achieve 100 fps circuit operation, as shown by the DPMLHW(P)*

entry in Table 4.2, this combined logic and routing delay would have to be reduced by

4.465 ns. While inserting pipelines into the the DPMLHW(P) longest path from PBUF

through PMIN and CMUX would reduce delays, it cannot be done directly. This is

because a computation in the current cycle relies on previous cost values generated by an

atomic block consisting of PMIN and CMUX. As discussed in Chapter 3, to introduce

further pipelining a method known as architectural retiming [11] can be used whereby

negative registers are inserted into the path. These registers attempt to predict the cost

computations for the next clock cycle before they have actually been made available by

the current cycle. The predictions can then be compared to an actual result after it has

been computed. If they are wrong, some form of state restoration is required.

A single additional pipelining register, for example, can be inserted within PMIN at

the output of parallel adder blocks. (i.e. at signals cost00, cost01 and cost10 in Figure

3.14a). A näıve approach to computing cost data entering PBUF would then involve

Chapter 4. Results and Discussion 80

feeding one of cost00, cost01 or cost10 back into the buffer as a predictor for the actual

cost. This predictor is a static predictor, i.e. it does not adapt to choose the signal most

likely to represent the actual cost. One cycle later, once the actual minimum of the

three costs is computed, a comparison to determine whether the predictor matches the

minimum is required. In the event that they do not match a penalty of two clock cycles

is incurred as a result of the mis-prediction (i.e. one clock cycle wasted as a result of

the actual prediction and a second clock cycle required for restoring the pipeline register

states). Using this simple prediction scheme on the Tsukuba image set, experiments

demonstrate that selecting cost00 as a predictor would yield a match (or hit) with the

actual cost about 45% of the time. Likewise, using cost01 this hit rate would stand at

51% and using cost10 the hit rate would be 43%. Clearly, such low rates of successful

prediction do not provide any real benefit given a two clock cycle penalty. Improvements

in these rates may be achievable by utilizing statistical properties of the cost matrix for

dynamic cost prediction. For example, a scheme that uses past cost computation patterns

for future selection of cost00, cost01 or cost10 could produce far better hit rates.

Much more significant improvements can be made in both logic and routing delays

via ASIC implementations of the same hardware at the cost of development and proto-

typing time. Some FPGA systems, such as the Xilinx Virtex 5, contain DSP blocks for

adder units that, if utilized, have demonstrated resulting clocking frequencies in excess

of 125 Mhz for the DPMLHW(P) implementation, thus achieving the performance of the

hypothetical DPMLHW(P)* implementation.

FPSP∗∗ =

2N +
(
2N + Dmax

2
− 1

)
M

Fmax clk

−1

(4.7)

To conclude, by interleaving backward and forward passes a significant speed up is

also possible. As discussed in Chapter 3 this interleaving behaves much like pipelining.

Chapter 4. Results and Discussion 81

As data for the current scanline is being processed by the forward pass, the backward

pass data continues and generates disparity estimates for the previous scanline. The

difficulty in this form of interleaving lies in the fact that forward and backward passes

utilize the same match matrix, MBUF. The problem can be solved by implementing a

double buffering scheme whereby the forward pass and backward pass write and read

from different match matrices — each match matrix contains data associated with either

the current scanline or the previous scanline. Equation 4.7 provides a formulation for the

worst case timing performance of such an interleaved architecture. The DPMLHW(P)**

entry listed in Table 4.2 demonstrates that a significant improvement can be made to

the DPMLHW(P) implementation with this interleaving. Disparity estimates can be

generated at a frame rate of 123.85 fps for a maximum disparity range Dmax = 128 pixels

and a resolution of 640× 480 pixels.

4.3 Resource Utilization

As discussed in Chapter 2, hardware resources for an FPGA can be broken down into

logic cells and DSP blocks. Despite the intensive nature of the dynamic programming

problem, the utilization of these resources remains fairly low. Note that, internally, logic

cells are divided further into a series of multiplexers (MUXs), look-up tables (LUTs)

and flip flops (FFs) that can be interconnected to form larger logic such as random ac-

cess memory (RAM), multipliers (MULTs), adders (ADD), comparators (CMP) or more.

With respect to both ASIC and FPGA implementations breaking down hardware into

these logical elements provides a rough estimate of resource utilization. Table 4.5 presents

a summary of higher level logical blocks utilized by the DPMLHW hardware for a pixel

resolution of 640× 480 and a disparity range of Dmax = 128 pixels.

The large chunk of adders, comparators, multiplexers and multipliers presented in Ta-

Chapter 4. Results and Discussion 82

Algorithm MUX RAM MULTADD CNT REG ENC CMP XOR

DPMLHW(P) 4113 333 66 394 5 183 130 788 396
DPMLHW(PP) 4108 269 65 394 5 81 130 788 369
DPMLHW(S) 26 8395 5 21 9 99 2 34 20

Table 4.5: A quantative look at the number of higher level logical blocks required for
an implementation of DPMLHW for a Xilinx XC2VP100 device. Resources are divided
into multiplexers (MUX), random access memories (RAM), multipliers (MULT), adders
(ADD), counters (CNT), registers (REG), encoders (ENC), comparators (CMP) and xor
gates (XOR).

ble 4.5 are synthesized for the parallelized circuitry in PMIN, PNOC and CMUX. Table

4.6 shows logic cell and DSP block utilization on a Xilinx XC2VP100 Virtext 2 pro device

for the DPMLHW(S), DPMLHW(PP) and DPMLHW(P) hardware implementations at

a resolution of 640×480 and disparity range of 128 pixels. For DPMLHW(P), the fastest

of the three hardware implementations, at a resolution of 640 × 480 and Dmax = 16,

logic cell utilization stands at: 4% of the FPGA resources. At D = 128, this utilization

increases to 32% of the FPGA resources. Similarly, at D = 16 the utilization of Block

RAM and Multiplier DSP blocks stands at: 8% and 2%, of total FPGA resources, re-

spectively. At D = 128 this utilization increases to: 58% and 14% respectively.

4.3.1 Improving Resource Utilization

As discussed earlier, routing delay was a significant component contributing to slow

processing speeds. It is, therefore, worth noting that the large number of parallelized

logic units present in PMIN and CMUX result in congestion at the pipeline and hence

longer routes to sub-units at the periphery of the component. Some FPGA’s contain

additional DSP blocks for adders and comparators that can alleviate the congestion while

also reducing logic delay — these blocks are, typically, optimized ASIC implementations

embedded within the FPGA. An example of one such FPGA is the Xilinx Virtex 5. By

utilizing the DSP blocks present in such an FPGA, circuit performance could be improved

to a more desirable speed of 99 fps (as shown by DPMLHW(P)* in Table 4.2). Likewise

Chapter 4. Results and Discussion 83

Algorithm Resource Type Used Available % Util.

DPMLHW(P)

Slices — 14448 44096 32%
LUT/MUX Logic Cell 20314 88192 23%
FF Logic Cell 8750 88192 9%
RAM Logic Cell 72 88192 0%
RAM Block RAM 260 444 58%
MULT Block Mult. 65 444 14%

DPMLHW(PP)

Slices — 11325 44096 25%
LUT/MUX Logic Cell 21409 88192 24%
FF Logic Cell 3378 88192 3%
RAM Logic Cell 0 88192 0%
RAM Block RAM 269 444 60%
MULT Block Mult. 65 444 14%

DPMLHW(S)

Slices — 39646 44096 89%
LUT/MUX Logic Cell 11271 88192 12%
FF Logic Cell 585 88192 0%
RAM Logic Cell 8384 88192 9%
RAM Block RAM 2 444 0%
MULT Block Mult. 1 444 0%

Table 4.6: Resource utilization resulting from an implementation of DPMLHW for a
Xilinx XC2VP100 device. Resources are divided into multiplexers (MUXs), look-up
tables (LUTs), flip flops (FFs), memories (RAMs) and multipliers (MULTs).

Chapter 4. Results and Discussion 84

logic cell utilization can also be decreased further in this manner.

Also discussed earlier was a double buffering scheme for improved timing performance.

Such a scheme requires the duplication of the match matrix, MBUF, resulting in an

increased RAM utilization. By implementing an alternate approach to the same forward

and backward pass interleaving whereby forward and backward passes write and read

data from the match matrix in reverse directions, it is possible to maintain a single RAM

module for MBUF. Further details may be found in Chapter 3, Section 3.2.9.

4.4 Summary

The accuracy, timing characteristics and resource consumption in the hardware (DPMLHW)

implementation were compared to existing software and hardware algorithms. The com-

parisons demonstrated that the fully parallelized hardware implementation, DPMLHW(P)

demonstrated equivalent and comparable accuracy to the best of existing stereo corre-

spondence algorithms when presented with standard stereo datasets. However, testing

on real world data demonstrated that uncorrelated noise in the input data has significant

impact on the quality of 3D reconstruction. It was noted that pre-filtering could improve

results in such situations. Many existing algorithms and hardware implementations also

pre-filter incoming data to improve the quality of correspondence results.

Furthermore, hardware routing and logic complexity was shown to have significant

impact on frame rates. Delays introduced by signal routing, particularly, reduce the

maximum clock frequency in unpredictable ways, and, in-turn, slow down frame process-

ing. DPMLHW(P)* introduced methods for optimizing these delay paths to produce

significantly higher clock frequencies. Likewise, the DPMLHW(P)** implementation

demonstrated that interleaving of backward and forward passes produces vastly superior

frame rates (i.e. 123.85 fps for Dmax = 128 pixels and resolution 640 × 480 pixels) in

comparison to other existing algorithms while still maintaining a reasonably low resource

footprint.

Chapter 5

Conclusion and Future Work

This thesis presents a novel hardware implementation, DPMLHW, of a DPML based

stereo correspondence algorithm [4] — the first known hardware implementation of a

dynamic programming disparity estimation solution. The DPMLHW implementation

makes use of parallelization by exploiting anti-diagonal structure of cost matrices. This

structure allows the computation of all costs along an anti-diagonal in parallel (within

a clock cycle) using stored cost values from two previous anti-diagonals. Furthermore,

throughput is increased by noting that the long combinational paths can be pipelined.

The architecture demonstrates that very high frame rate disparity and depth esti-

mates can be achieved while also maintaining high degrees of accuracy. While other

competing algorithms are known to produce higher accuracy (e.g. graph cuts, belief

propagation, etc.), they are extremely computationally complex (slow) and thus less

suited for hardware implementation. Likewise, faster SAD and phase correlation algo-

rithms, while hardware friendly, have typically shown architectures that produce frame

rates of approximately 30 fps after implementation. The DPMLHW(P) approach has

demonstrated frame rates of 63 fps on the Xilinx Virtex 2 pro FPGA and 100 fps on the

Xilinx Virtex 5 FPGA. These frame rates are generated at high resolutions (640 × 480

pixels) and high disparity ranges of 128 pixels. At the expense of resolution and dispar-

85

Chapter 5. Conclusion and Future Work 86

ity range, depth estimates can be produced at even faster speeds of 248 fps thus vastly

outperforming existing software and hardware methods.

As in other techniques, accuracy drops off quite rapidly in the presence of noisy input

data. Improvements in this accuracy can be achieved by Gaussian or median pre-filtering

of the aforementioned input. A lower noise camera system can also result in marked im-

provements by reducing noise during image acquisition. A future modification, of the

DPMLHW algorithm, whereby costs are aggregated over a correlation window shows po-

tential for further improved performance in the presence of noise. This windowing could

employ hardware adder trees for fast cost computation. Uneven illumination or exposure

across cameras in a stereo setup can cause significant loss in accuracy. Localized image

normalization, combined with windowing, may improve accuracy. Other techniques that

also model specular reflectance properties and transparency could also improve results.

Further speed increases are possible if the DPMLHW architecture is modified to ac-

comodate additional pipelines between the PBUF and CBUF registers. These pipelines,

however, require a method to predict cost values, for subsequent cycles, before the data

in the current cycle has reached the end of the pipeline. A method known as architectural

retiming [11] is proposed for these future speed optimizations. Additional speed improve-

ments are possible by utilizing FPGA DSP blocks (as shown by the 100 fps performance

on the Virtex 5 FPGA). Interleaving backward and forward passes associated with the

DPMLHW solution also promises frame rates of 123 fps for 640×480 pixel images at 128

pixel disparity range — a significant increase in performance. This interleaving can be

implemented by introducing a double buffering scheme for reads and writes to the match

matrix. Furthermore it is noted that ASIC implementations will provide far greater speed

increase at the cost of development time and financial resources.

Resource consumption for the DPMLHW implementation remains reasonably low

with logic utilization standing at 32% of the Virtex 2 pro FPGA. Approximately 4113

multiplexers, 333 RAMs, 66 Multipliers, 394 adders, 5 counters, 183 registers, 130 en-

Chapter 5. Conclusion and Future Work 87

coders and 788 comparators formed the bulk of these resources. Problems resulting from

congestion, during parallelization, are a key source of signal delays and hence performance

limitations — future ASIC implementation can allow for reduced component surface area

to alleviate congestion. FPGA DSP blocks (e.g. in the Virtex 5 FPGA) utilized to this

end have shown marked performance improvements.

Bibliography

[1] Michael Belshaw. Personal Communication. Design document, Queens University,

December 2007.

[2] Myron Z. Brown, Darius Burschka, and Gregory D. Hager. Advances in Compu-

tational Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,

5(8):993–1008, August 2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press/McGraw-Hill, 2001.

[4] Ingemar J. Cox, Sunita L. Hingorani, Satish B. Rao, and Bruce M. Maggs. A

Maximum Likelihood Stereo Algorithm. Computer Vision and Image Understanding

(CVIU), 63(3):542–567, May 1996.

[5] Ahmad Darabiha, W. James MacLean, and Jonathan Rose. Reconfigurable Hard-

ware Implementation of a Phase-Correlation Stereo Algorithm. Machine Vision and

Applications, 17(2):116–132, March 2006.

[6] Javier Diaz, Eduardo Ros, Silvio P. Sabatini, Fabio Solari, and Sonia Mota. A

Phase-Based Stereo Vision System-On-A-Chip. Biosystems, 87(2–3):314–321, July

2006.

[7] Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei Gong. A Performance

Study on Different Cost Aggregation Approaches Used in Real-Time Stereo Match-

88

Bibliography 89

ing. International Journal of Computer Vision (IJCV), 75(2):283–296, February

2007.

[8] Dongil Han and Dae-Hwan Hwang. A Novel Stereo Matching Method for Wide

Disparity Range Detection. In International Conference on Image Analysis and

Recognition (ICIAR), pages 643–650, 2005.

[9] Masonori Hariyama, Yasuhiro Kobayashi, Haruka Sasaki, and Michitaka Kameyama.

FPGA Implementation of a Stereo Matching Processor Based on Window-Parallel-

and-Pixel-Parallel Architecture. In Midwest Symposium on Circuits and Systems

(MWSCAS), volume 2, pages 1219–1222, 2005.

[10] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, 2000.

[11] S. Hassoun and C. Ebeling. Architectural Retiming: An Overview. In International

Workshop on Timing Issues in the Specification and Synthesis of Digital Systems

(TAU), November 1995.

[12] Jamin Islam. Stereo Image Rectification Module. Design document, Ryerson Uni-

versity, 350 Victoria Street, Toronto, Ontario, Canada M5B2K3, September 2007.

[13] Ricardo P. Jacobi, Renato B. Cardoso, and Geovany A. Borges. VoC: A Reconfig-

urable Matrix for Stereo Vision Processing. In International Parallel and Distributed

Processing Symposium (IPDPS), April 2006.

[14] Yunde Jia, Xiaoxun Zhang, Mingxiang Li, and Luping An. A Miniature Stereo Vision

Machine (MSVM-III) for Dense Disparity Mapping. In Internationl Conference on

Pattern Recognition (ICPR), 2004.

[15] Valeri Kirishchian. Personal Communication. Design document, Ryerson University,

350 Victoria Street, Toronto, Ontario, Canada M5B2K3, December 2007.

Bibliography 90

[16] Ye Lu, Jason Z. Zhang, Q. M. Jonathan Wu, and Ze-Nian Li. A Survey of Motion-

Parallax-Based 3-D Reconstruction Algorithms. IEEE Transactions on Systems,

Man, and Cybernetics – Part C: Applications and Reviews, 34(4), November 2004.

[17] W. James Maclean, Siraj Sabihuddin, and Jamin Islam. Leveraging Cost Matrix

Structure for Dynamic Programming in Hardware. Submitted for review: Computer

Vision and Image Understanding (CVIU), June 2008.

[18] Divyang K. Masrani and W. James MacLean. A Real-Time Large Disparity Range

Stereo-System using FPGAs. In International Conference on Computer Vision Sys-

tems (ICVS), 2006.

[19] Johel Miteran, Jean-Philippe Zimmer, Michel Paindavoine, and Julien Dubois. Real-

Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture. EURASIP

Journal on Image and Video Processing, December 2007.

[20] Yosuke Miyajima and Tsutomu Maruyama. A Real-Time Stereo Vision System with

FPGA. In International Conference on Field Programmable Logic and Applications

(FPL), pages 448–457, 2003.

[21] Stefania Perri, Daniela Colonna, Paolo Zicari, and Pasquale Corsonello. SAD-Based

Stereo Matching Circuit for FPGAs. In International Conference on Electronics,

Circuits and Systems (ICECS), pages 846–849, December 2006.

[22] Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms. International Journal of Computer Vi-

sion (IJCV), 47(1–3):7–42, April 2002.

[23] Daniel Scharstein and Richard Szeliski. High Accuracy Stereo Depth Maps using

Structured Light. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), volume 1, pages 195–202, June 2003.

Bibliography 91

[24] Daniel Scharstein and Richard Szeliski. Middlebury Stereo Vision Page, 2007.

[25] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard

Szeliski. A Comparison and Evaluation of Multi-View Stereo Reconstruction Al-

gorithms. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 519–526, 2006.

[26] Vikram Simhadri, Premanand Chandramani, and Yusuf Ozturk. RASCor: Realtime

Associative Stereo Correspondence. In International Conference on Image Process-

ing (ICIP), September 2007.

[27] M.F. Tappen and W.T. Freeman. Comparison of Graph Cuts with Belief Propaga-

tion for Stereo, using Identical MRF Parameters. In IEEE International Conference

on Computer Vision (ICCV), volume 2, pages 900–906, October 2003.

[28] Jan van der Horst, Rien van Leeuwen, Harry Broers, Richard Kleihorst, and Pieter

Jonker. A Real-Time Stereo SmartCam, using FPGA, SIMD and VLIW. In Work-

shop on Applications of Computer Vision, May 2006.

[29] John Iselin Woodfill, Gaile Gordon, and Ron Buck. Tyzx DeepSea High Speed

Stereo Vision System. In Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), volume 3, pages 41–46, 2004.

[30] Barbara Zitova and Jan Flusser. Image Registration Methods: A Survey. Image

and Vision Computing, 21:977–1000, June 2003.

