
CSC165 Tutorial #7

Sample Solutions

Winter 2015

Work on these exercises before the tutorial. You don’t have to come up with complete solutions before the
tutorial, but you should be prepared to discuss them with your TA.

IMPORTANT: Where applicable, you must use the proof structures and format of this course.

For this exercise, we will be using the following algorithm:

1 def meaning_of_life(A):
2 """ A function that takes a list A and outputs t """
3 # Precondition: _______________________________________
4

5 n = len(A)
6 t = 0
7 if A[0] % 2 == 1:
8 i = 0
9 while i < n**2:

10 t += A[i % n]
11 i += 1
12 else:
13 i = n-1
14 while i >= 0:
15 t += A[i]
16 i -= 1
17 return t

1. Is there a precondition for meaning of life? Think about how a precondition for an algorithm relates
to B′ ∈ N for run-time proofs, and whether one is necessary in this case.

Solution:

The precondition should be: A contains n>0 numbers, where n = len(A). While your run-time
formula (re: Q2) and analysis (re: Q3) may work without this requirement, you must consider this
when choosing your value for B′. Otherwise, you could be mathematically correct, but practically
wrong—meaning of life will return an error if you try to run it on an empty list A, at least in
Python. You should always keep these things in mind when analysing an algorithm.

1

2. How many steps will meaning of life take for A = [1, 2, 3]? A = [2, 1, 3]?

Solution: A = [1, 2, 3]

1 n = len(A) # n = 3 1 step
2 t = 0 1 step
3 if A[0] % 2 == 1: # true 1 step
4 i = 0 1 step
5 while i < n**2: # 0 < 9 1 step
6 t += A[i % n] # t = 0 + 0 = 0 1 step
7 i += 1 # i = 0 + 1 = 1 1 step
8 # 1 < 9, 2 < 9, ..., 8 < 9 8*3 more steps
9 # 1 more step for the closing loop condition, 9<9

10 else: # irrelevant 0 steps
11 i = n-1 0 steps
12 while i >= 0: 0 steps
13 t += A[i] 0 steps
14 i -= 1 0 steps
15 return t 1 step

Therefore, this will take 33 steps.

Solution: A = [2, 1, 3]

1 n = len(A) # n = 3 1 step
2 t = 0 1 step
3 if A[0] % 2 == 1: # false 1 step
4 i = 0 0 steps
5 while i < n**2: # 0 < 9 0 steps
6 t += A[i % n] # t = 0 + 0 = 0 0 steps
7 i += 1 # i = 0 + 1 = 1 0 steps
8 else: by definition of step 4; so, 0 (extra) steps
9 i = n-1 # i = 2 1 step

10 while i >= 0: # 2 >= 0 1 step
11 t += A[i] # t = 0 + 2 = 2 1 step
12 i -= 1 # i = 1 1 step
13 # 1 >= 0, 0 >= 0 6 more steps
14 # 1 more step for the closing loop condition, -1 <= 0
15 return t 1 step

Therefore, this will take 15 steps.

2

3. What is the formula for the running time of meaning of life? What is the formula for the worst-case
running time of meaning of life?

If you’re unsure of what the difference is, recall Q3 from Tutorial 6.

Solution:

From Q2, we can see that lines 5, 6, 7, and 17 (as in the original question), take exactly 1 ‘time’ each,
no matter the input—as long as the precondition holds. These correspond to assigning values (e.g. t

= 0), checking an if condition, and returning a value.

These correspond to 4 steps.

Now, we have two cases, one in which A[0] is odd, and one in which A[0] is even.

Case 1: A[0] is odd. Then the outer loop will need 3n2 + 2 steps.
Case 2: A[0] is even. Then the outer loop will need 3n+ 2 steps.

Therefore, the running time function of meaning of life is:

meaning of life(n) =

{
3n2 + 6, A[0] is odd
3n+ 6, A[0] is even

Based on the above, the worst-case running time function is 3n2 + 6.

4. Prove of disprove: meaning of life(n) ∈ Ω(n3).

Solution:

Based on the above, the worst-case running time function is 3n2 + 6, so we will only consider the
worst case, i.e. when the first element of A is odd. Then the claim is false, so we need to prove
∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ meaning of life(n) < cn3. Now:

lim
n→∞

3n2 + 6

n3
= 0

Then, we know the following:

∀ε ∈ R+,∃n′ ∈ N,∀n ∈ N, n ≥ n′ =⇒ 3n2 + 6

n3
< ε

Assume c ∈ R+, B ∈ N
We know that ∃n′ ∈ N,∀n ∈ N, n ≥ n′ =⇒ 3n2+6

n3 < c # from definition, with ε = c
// Prove the first part of your statement, i.e. n ≥ B
Let n1 be such that ∀n ∈ N, n ≥ n1 =⇒ 3n2+6

n3 < c
Let n0 = max(B,n1); then n0 ∈ N
Then, n0 ≥ B # definition of max
// Now, prove that meaning of life(n) < cn3

Then, n0 ≥ n1 # definition of max

Then,
3n2

0+6

n3
0

< c # follows from limit definition

Then 3n20 + 6 < cn30, and so meaning of life(n0) < cn30
Then, n0 ≥ B ∧ meaning of life(n0) < cn30 # simple conjunction

Then ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ meaning of life(n0) < cn30
So, meaning of life(n0) 6∈ Ω(n3)

3

5. The following algorithm was also discussed in tutorial:

1 def order(L):
2 i = 1
3 while i < len(L):
4 j = i
5 while j > 0 and L[j] < L[j-1]: # mention that you consider this 1 step
6 # or 3 steps; I choose 1 for simplicity
7 L[j], L[j-1] = L[j-1], L[j]
8 j -= 1
9 i += 1

The outer loop iterates over i = 1, 2, 3, ..., n-1, and for each i, the inner loop iterates over j =

i, i-1, ..., 2, 1, as long as L[j] < L[j-1]. So in the worst case, there are 1+2+3+ · · ·+n−1 =
n(n− 1)/2 swaps (line 7).

For each value of j, the algorithm performs 3 steps, so over all j, there are 3i steps. There are also 3
steps for the lines in the inner loop for each i, and an additional step to evaluate the last inner loop
condition; each iteration of the outer loop, then, takes 3i + 4 steps.

The total number of steps for the algorithm is then:(
n−1∑
i=1

(3i+ 4)

)
+ 2 = 3

(
n−1∑
i=1

i

)
+ 4

(
n−1∑
i=1

1

)
+ 2

= 3
n(n− 1)

2
+ 4(n− 1) + 2

= 3n2 + 5n− 4

4

