
CSC165 Tutorial #5

Sample Solutions

Winter 2015

1. Use proof by contradiction to show that there is no integer that is both even and odd.

Solution:

(1) Translating the claim: Here’s the translation

¬(∃n ∈ Z, (∃k ∈ Z, n = 2k) ∧ (∃k ∈ Z, n = 2k + 1)).

(2) Deriving the outline of the proof : Since we are asked to prove the claim by contradiction,
we must assume the negation of the claim, which is the following statement, and try to derive a
contradiction:

∃n ∈ Z, (∃k ∈ Z, n = 2k) ∧ (∃k ∈ Z, n = 2k + 1).

The proof outline should look like the following:

Assume ∃n ∈ Z, (∃k ∈ Z, n = 2k) ∧ (∃k ∈ Z, n = 2k + 1). # to derive contradiction
Let k0, k1, n0 ∈ Z such that n0 = 2k0 and n0 = 2k1 + 1. # instantiate ∃

...
Contradiction! # ...

Then ¬(∃n ∈ Z, (∃k ∈ Z, n = 2k) ∧ (∃k ∈ Z, n = 2k + 1)). # assuming the negation leads to a
contradiction

(3) Scratch Work: Based on the outline, there should be three integers k0, k1, n0 such that n0 = 2k0
and n0 = 2k1 + 1.

What do these two expressions tell you?

The first thing that comes to mind is that 2k0 = 2k1 + 1. Try to see if it gives you a contradiction!

From 2k0 = 2k1 + 1 we can conclude that 2k0 − 2k1 = 1, and so k0 − k1 = 1/2. Do you see a
contradiction?

(4) Putting everything together: Once you have a sketch of the proof, you can put it in the proof
structure

Assume ∃n ∈ Z, (∃k ∈ Z, n = 2k) ∧ (∃k ∈ Z, n = 2k + 1). # to derive contradiction
Let k0, k1, n0 ∈ Z such that n0 = 2k0 and n0 = 2k1 + 1. # instantiate ∃
Then n0 − n0 = 0 = 2(k0 − k1)− 1. # algebra
Then k0 − k1 = 1/2. # algebra
Contradiction! # k0, k1 ∈ Z and their deference must be in Z

Then ¬(∃n ∈ Z, (∃k ∈ Z, n = 2k) ∧ (∃k ∈ Z, n = 2k + 1)). # assuming the negation leads to a
contradiction
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2. Prove or disprove the following statement:

S1 : If product of two positive real numbers is greater than 50, then at least one of the numbers is
greater than 7.

Solution:

(1) Translating the claim: Here’s the translation

∀x ∈ R+,∀y ∈ R+, ((x.y) > 50)⇒ (x > 7) ∨ (y > 7).

(2) Deriving the outline of the proof : First, you need to decide if the claim is true or false. The
contrapositive of the implication seems rather obvious, but if you don’t see it immediately you can
verify the claim for some specific examples.

From the translation we can see that the claim is a universally quantified implication. Since proving
the contrapositive seems to be easier, we will use the indirect proof structure. So the proof outline
should look like the following:

Assume x, y ∈ R+. # x, y are typical positive real numbers
Assume (x ≤ 7) ∧ (y ≤ 7). # antecedent of the contrapositive

...
Then (x.y) ≤ 50. # ...

Then (x ≤ 7) ∧ (y ≤ 7)⇒ (x.y) ≤ 50. # introduce ⇒
Then ((x.y) > 50)⇒ (x > 7) ∨ (y > 7). # contrapos. is equivalent to the implication

Then ∀x ∈ R+,∀y ∈ R+, ((x.y) > 50)⇒ (x > 7) ∨ (y > 7). # introduce ∀

(3) Scratch Work: Now you only need to fill in the “...” in the proof outline.

Take a look at the assumptions that you have: 0 < x ≤ 7 and 0 < y ≤ 7.

It’s not hard to see that (x.y) ≤ 49, and therefore (x.y) ≤ 50.

(4) Putting everything together:

Assume x, y ∈ R+. # x, y are typical positive real numbers
Assume (x ≤ 7) ∧ (y ≤ 7). # antecedent of the contrapositive

Then (x.y) ≤ 49 ≤ 50. # since 0 < x ≤ 7 and 0 < y ≤ 7
Then (x ≤ 7) ∧ (y ≤ 7)⇒ (x.y) ≤ 50. # introduce ⇒
Then ((x.y) > 50)⇒ (x > 7) ∨ (y > 7). # contrapos. is equivalent to the implication

Then ∀x ∈ R+,∀y ∈ R+, ((x.y) > 50)⇒ (x > 7) ∨ (y > 7). # introduce ∀

Alternative Solution: It’s also possible to prove the claim by contradiction (recall that indirect proof
is a special case of proof by contradiction).

The structure of the proof will be different, but the arguments are similar.

Assume ∃x ∈ R+,∃y ∈ R+, ((x.y) > 50) ∧ (x ≤ 7) ∧ (y ≤ 7). # to derive contradiction
Let x0, y0 ∈ R+ such that x0 ≤ 7 and y0 ≤ 7 and (x0.y0) > 50. # instantiate ∃
Then (x0.y0) ≤ 49. # since 0 < x0 ≤ 7 and 0 < y0 ≤ 7
Contradiction! # by assumption (x0.y0) > 50

Then ∀x ∈ R+,∀y ∈ R+, ((x.y) > 50)⇒ (x > 7)∨ (y > 7). # assuming the negation leads to a
contradiction
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3. Prove or disprove the following statement:

S2 : If product of two positive real numbers is greater than z ∈ R+, then at least one of the numbers
is greater than

√
z.

Hint: Note that S1 is a special case of S2.

Solution:

(1) Translating the claim: Here’s the translation

∀x ∈ R+,∀y ∈ R+,∀z ∈ R+, ((x.y) > z)⇒ (x >
√
z) ∨ (y >

√
z).

(2) Deriving the outline of the proof : First, you need to decide if the claim is true or false.

You can see that the claim generalizes S1. Again, it’s easy to see that the contrapositive of the
implication is true.

We will also have a similar outline:

Assume x, y, z ∈ R+. # x, y, z are typical positive real numbers
Assume (x ≤

√
z) ∧ (y ≤

√
z). # antecedent of the contrapositive

...
Then (x.y) ≤ z. # ...

Then (x ≤
√
z) ∧ (y ≤

√
z)⇒ (x.y) ≤ z. # introduce ⇒

Then ((x.y) > z)⇒ (x >
√
z) ∨ (y >

√
z). # contrapos. is equivalent to the implication

Then ∀x ∈ R+,∀y ∈ R+,∀z ∈ R+, ((x.y) > z)⇒ (x >
√
z) ∨ (y >

√
z). # introduce ∀

(3) Scratch Work: The proof sketch is also very similar.

By the assumptions we have: 0 < x ≤
√
z and 0 < y ≤

√
z.

Thus, (x.y) ≤ (
√
z.
√
z) = z.

(4) Putting everything together:

Assume x, y, z ∈ R+. # x, y, z are typical positive real numbers
Assume (x ≤

√
z) ∧ (y ≤

√
z). # antecedent of the contrapositive

Then (x.y) ≤ (
√
z.
√
z) = z. # since 0 < x ≤

√
z and 0 < y ≤

√
z

Then (x ≤
√
z) ∧ (y ≤

√
z)⇒ (x.y) ≤ z. # introduce ⇒

Then ((x.y) > z)⇒ (x >
√
z) ∨ (y >

√
z). # contrapos. is equivalent to the implication

Then ∀x ∈ R+,∀y ∈ R+,∀z ∈ R+, ((x.y) > z)⇒ (x >
√
z) ∨ (y >

√
z). # introduce ∀

Alternative Solution: We can also prove the claim by contradiction

Assume ∃x ∈ R+,∃y ∈ R+,∃z ∈ R+, ((x.y) > z)∧(x ≤
√
z)∧(y ≤

√
z). # to derive contradiction

Let x0, y0, z0 ∈ R+ such that x0 ≤
√
z0 and y0 ≤

√
z0 and (x0.y0) > z0. # instantiate ∃

Then (x0.y0) ≤ z0. # since 0 < x0 ≤
√
z0 and 0 < y0 ≤

√
z0

Contradiction! # by assumption (x0.y0) > z0
Then ∀x ∈ R+,∀y ∈ R+,∀z ∈ R+, ((x.y) > z) ⇒ (x >

√
z) ∨ (y >

√
z). # assuming the

negation leads to a contradiction
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4. Recall that for integers x, y, z, the notation x ≡ y mod z means ”x− y is a multiple of z.“

Use this definition to prove the following statement.

∀n ∈ N, (n3 − n) ≡ 0 mod 6.

Hint 1: Recall that n ∈ N is a multiple of 6 if and only if n is multiple of both 2 and 3.

Hint 2: Recall that (n2 − 1) = (n− 1)(n + 1).

Solution:

(1) Translating the claim: The claim is already in logical notation. But it might be helpful if we
re-state it into a simpler statement using the definition of mod.

The statement says that (n3−n)−0 = (n3−n) is a multiple of 6. So we can re-state it as the following

∀n ∈ N,∃k ∈ N, (n3 − n) = 6k.

(2) Deriving the outline of the proof : We have a universally quantified statement, but the given
assumption (i.e. n ∈ N) alone does not seem to be enough for proving that (n3 − n) is a multiple of 6;
we should consider other properties of natural numbers!

Since the claim is about multiples of 6, it seems relevant that we consider prime factors of 6: we can
show that (n3 − n) is a multiple both 2 and 3, and then conclude that that it’s a multiple of 6. (Note
that by doing so we are breaking the claim into the statements that are simpler to prove)

To prove that (n3 − n) is a multiple of 2, we consider two cases: (1) n is odd (2) n is even.

To prove that (n3 − n) is a multiple of 3, we consider three cases: (1) n is a multiple of 3 (2) the
reminder of n divided by 3 is 1 (3) the reminder of n divided by 3 is 2.

So the outline should look like the following:

Assume n ∈ N. # n is a typical natural number
Case 1: Assume exists k0 ∈ N such that n = 2k0

...
Then exists k1 ∈ N such that n3 − n = 2k1. # ...

Case 2: Assume exists k0 ∈ N such that n = 2k0 + 1
...

Then exists k1 ∈ N such that n3 − n = 2k1. # ...
Then exists k1 ∈ N such that n3 − n = 2k1. # true for both cases
Case 3: Assume exists k0 ∈ N such that n = 3k0

...
Then exists k2 ∈ N such that n3 − n = 3k2. # ...

Case 4: Assume exists k0 ∈ N such that n = 3k0 + 1
...

Then exists k2 ∈ N such that n3 − n = 3k2. # ...
Case 5: Assume exists k0 ∈ N such that n = 3k0 + 2

...
Then exists k2 ∈ N such that n3 − n = 3k2. # ...

Then exists k2 ∈ N such that n3 − n = 3k2. # true for all three cases
Then exists k1 ∈ N s.t. n3 − n = 2k1 and k2 ∈ N s.t. n3 − n = 3k2.# proved that both are true

Then exists k ∈ N such that n3−n = 6k. # both 2 and 3 are factors of n3−n, so 2 ∗ 3 = 6
is a factor of n3 − n

Then ∀n ∈ N,∃k ∈ N, n3 − n = 6k. # introduce ∀ and ∃
Then ∀n ∈ N, (n3 − n) ≡ 0 mod 6. # by definition of ≡ mod
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(3) Scratch Work: We want to show that n3 − n is a multiple of both 2 and 3.

By factorizing n3 − n we will get: n3 − n = n(n− 1)(n + 1).

It’s not hard to see that n3 − n is always even (either n is even or n + 1 is even).

Using the definition of multiples of 3, and by doing some algebra, you can also show that either n− 1
is a multiple of 3, or n is a multiple of 3, or n + 1 is a multiple of 3.

(4) Putting everything together:

Assume n ∈ N. # n is a typical natural number
Then n3 − n = n(n2 − 1) = n(n− 1)(n + 1). # algebra
Case 1: Assume exists k0 ∈ N such that n = 2k0

Then n3 − n = 2k0(2k0 − 1)(2k0 + 1). # substitute n by 2k0
Then exists k1 ∈ N such that n3 − n = 2k1. # k1 = k0(2k0 − 1)(2k0 + 1) and k1 ∈ N

Case 2: Assume exists k0 ∈ N such that n = 2k0 + 1
Then n3 − n = (2k0 + 1)2k0(2k0 + 2). # substitute n by 2k0 + 1
Then exists k1 ∈ N such that n3 − n = 2k1. # k1 = (2k0 + 1)k0(2k0 + 2) and k1 ∈ N

Then exists k1 ∈ N such that n3 − n = 2k1. # true for both cases
Case 3: Assume exists k0 ∈ N such that n = 3k0

Then n3 − n = 3k0(3k0 − 1)(3k0 + 1). # substitute n by 3k0
Then exists k2 ∈ N such that n3 − n = 3k2. # k2 = k0(3k0 − 1)(3k0 + 1) and k2 ∈ N

Case 4: Assume exists k0 ∈ N such that n = 3k0 + 1
Then n3 − n = (3k0 + 1)3k0(3k0 + 2). # substitute n by 3k0 + 1
Then exists k2 ∈ N such that n3 − n = 3k2. # k2 = (3k0 + 1)k0(3k0 + 2) and k2 ∈ N

Case 5: Assume exists k0 ∈ N such that n = 3k0 + 2
Then n3 − n = (3k0 + 2)(3k0 + 1)(3k0 + 3). # substitute n by 3k0 + 2
Then exists k2 ∈ N such that n3−n = 3k2. # k2 = (3k0 +2)(3k0 +1)(k0 +1) and k2 ∈ N

Then exists k2 ∈ N such that n3 − n = 3k2. # true for all three cases
Then exists k1 ∈ N s.t. n3 − n = 2k1 and k2 ∈ N s.t. n3 − n = 3k2.# proved that both are true

Then exists k ∈ N such that n3−n = 6k. # both 2 and 3 are factors of n3−n, so 2 ∗ 3 = 6
is a factor of n3 − n

Then ∀n ∈ N,∃k ∈ N, n3 − n = 6k. # introduce ∀ and ∃
Then ∀n ∈ N, (n3 − n) ≡ 0 mod 6. # by definition of ≡ mod

5


