CSC165 Tutorial \#4

Exercises

Winter 2015

Work on these exercises before the tutorial. You don't have to come up with a complete solution, but you should be prepared to discuss them with your TA.

1. Use the proof structure of this course to disprove claim S_{1} :

$$
S_{1}: \quad \forall x \in \mathbb{R}, 2\lfloor x\rfloor>2 x-1
$$

2. Consider the definitions:

$$
\begin{array}{r}
\forall n \in \mathbb{N}, U(n) \Leftrightarrow \exists q \in \mathbb{N}, n=5 q+3 \\
\forall m \in \mathbb{N}, V(m) \Leftrightarrow \exists q^{\prime} \in \mathbb{N}, m=5 q^{\prime}+4 \\
\forall p \in \mathbb{N}, W(p) \Leftrightarrow \exists q^{\prime \prime} \in \mathbb{N}, p=5 q^{\prime \prime}+2
\end{array}
$$

Use the definitions and the proof structure of this course to prove statement S_{2} :

$$
S_{2}: \quad \forall m \in \mathbb{N}, \forall n \in \mathbb{N},(V(m) \wedge U(n)) \Rightarrow W(m \times n)
$$

3. Use the proof structure of this course to prove the following claim:

$$
S_{3}: \quad \forall m \in \mathbb{N},\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right) \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right)
$$

