CSC165 Tutorial \#4

Sample Solutions

Winter 2015

Work on these exercises before the tutorial. You don't have to come up with complete solutions before the tutorial, but you should be prepared to discuss them with your TA.

1. Use the proof structure of this course to disprove claim S_{1} :

$$
S 1: \quad \forall x \in \mathbb{R}, 2\lfloor x\rfloor>2 x-1
$$

Solution: We prove the negation of S_{1} :

$$
\neg S_{1}: \quad \exists x \in \mathbb{R}, 2\lfloor x\rfloor \leq 2 x-1
$$

Let $x=0.6$. Then $x \in \mathbb{R} . \quad \# 0.6 \in \mathbb{R}$
Then $2\lfloor x\rfloor=2\lfloor 0.6\rfloor=2 \cdot 0=0 \quad \# 0$ is greatest integer ≤ 0.6
Then $2 x-1=2(0.6)-1=0.2 \geq 0=2\lfloor x\rfloor \quad \#$ by choice of x Then $\exists x \in \mathbb{R}, 2\lfloor x\rfloor \leq 2 x-1 \quad \#$ introduced \exists
2. Consider the definitions:

$$
\begin{array}{r}
\forall n \in \mathbb{N}, U(n) \Leftrightarrow \exists q \in \mathbb{N}, n=5 q+3 \\
\forall m \in \mathbb{N}, V(m) \Leftrightarrow \exists q^{\prime} \in \mathbb{N}, m=5 q^{\prime}+4 \\
\forall p \in \mathbb{N}, W(p) \Leftrightarrow \exists q^{\prime \prime} \in \mathbb{N}, p=5 q^{\prime \prime}+2
\end{array}
$$

Use the definitions and the proof structure of this course to prove statement S_{2} :

$$
S_{2}: \quad \forall m \in \mathbb{N}, \forall n \in \mathbb{N},(V(m) \wedge U(n)) \Rightarrow W(m \times n)
$$

Solution:

Assume $m \in \mathbb{N}$, assume $n \in \mathbb{N} . \quad \# m, n$ are generic natural numbers
Assume $V(m) \wedge U(n) . \quad \#$ antecedent
Then $\exists q \in \mathbb{N}, m=5 q+4 \quad$ \# first part of antecedent
Choose $q_{1} \in \mathbb{N}, m=5 q_{1}+4 \quad \#$ instantiate existential
Then $\exists q \in \mathbb{N}, n=5 q+3 \quad \#$ second part of antecedent
Choose $q_{2} \in \mathbb{N}, n=5 q_{2}+3 \quad \#$ instantiate existential
Then $m \times n=\left(5 q_{1}+4\right)\left(5 q_{2}+3\right)=5\left(5 q_{1} q_{2}+3 q_{1}+4 q_{2}+2\right)+2 \quad \#$ algebra
Then $\exists q^{\prime \prime} \in \mathbb{N}, m \times n=5 q^{\prime \prime}+2 \quad \# \quad q^{\prime \prime}=5 q_{1} q_{2}+3 q_{1}+4 q_{2}+2$, and $5, q_{1}, q_{2}, 3,4,2 \in \mathbb{N}$
Then $W(m \times n) \quad \#$ definition of $W(m \times n)$, since $m, n \in \mathbb{N}$, so $m \times n \in \mathbb{N}$
Then $(V(m) \wedge U(n)) \Rightarrow W(m \times n) \quad$ \# introduced \Rightarrow
Then $\forall m \in \mathbb{N}, \forall n \in \mathbb{N},(V(m) \wedge U(n)) \Rightarrow W(m \times n) \quad \#$ introduced \forall.
3. Use the proof structure of this course to prove the following claim:

$$
S_{3}: \quad \forall m \in \mathbb{N},\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right) \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right)
$$

Solution:

Assume $m \in \mathbb{N} . \quad \# m$ is a typical natural number
Assume $\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2$. $\quad \#$ antecedent
Then $m^{2}=\left(6 q_{1}+2\right)^{2}=36 q_{1}^{2}+24 q_{1}+4 \quad$ \# substitute $m=6 q_{1}+2$ into m^{2}
Then $m^{2}=6\left(6 q_{1}^{2}+4 q_{1}\right)+4$. \# factor previous line
Then $\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4 . \quad \# q_{2}=6 q_{1}^{2}+4 q_{1}, q_{2} \in \mathbb{N}$, since $6, q_{1}, 4 \in \mathbb{N}$
Then $\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right) \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right) \quad$ \# introduced \Rightarrow
Then $\forall m \in \mathbb{N},\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right) \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right)$. \# introduced \forall

