CSC165 Tutorial \#3

Sample Solutions

Winter 2015

Work on these exercises before the tutorial. You don't have to come up with complete solutions before the tutorial, but you should be prepared to discuss them with your TA.

Proving Equivalence

1. Prove that $P \Longrightarrow(Q \Longrightarrow(R \Longrightarrow S))$ is equivalent to $(P \wedge Q \wedge R) \Longrightarrow S$.

Sample solution:

$$
\begin{aligned}
& P \Rightarrow(Q \Rightarrow(R \Rightarrow S)) \quad \Leftrightarrow \quad \neg P \vee(\neg Q \vee(\neg R \vee S)) \quad \text { [implication rule] } \\
& \Leftrightarrow \quad(\neg P \vee \neg Q \vee \neg R) \vee S \quad \text { [associativity of } \vee \text {] } \\
& \Leftrightarrow \quad \neg(P \wedge Q \wedge R) \vee S \quad \text { [DeMorgan's Law] } \\
& \Leftrightarrow \quad(P \wedge Q \wedge R) \Rightarrow S \quad \text { [implication rule]. }
\end{aligned}
$$

2. Prove that $((P \Rightarrow Q) \Rightarrow R) \Rightarrow S$ is equivalent to $(\neg P \wedge \neg R) \vee(Q \wedge \neg R) \vee S$.

Sample solution:

$$
\begin{array}{rlrl}
((P \Rightarrow Q) \Rightarrow R) \Rightarrow S & \Leftrightarrow & \Leftrightarrow(\neg(\neg P \vee Q) \vee R) \vee S & \text { [implication rule] } \\
& \Leftrightarrow & ((\neg P \vee Q) \wedge \neg R) \vee S \quad \text { [DeMorgan's Law] } \\
& \Leftrightarrow & (\neg P \wedge \neg R) \vee(Q \wedge \neg R) \vee S \quad \text { [distributivity of } \wedge]
\end{array}
$$

Negation

1. Every dog has its day, or perhaps its cat.

Sample solution: Some dog has neither its day nor its cat.
2. $\forall x \in X, \exists y \in Y, x>y \wedge y>x$

Sample solution: $\exists x \in X, \forall y \in Y, x \leq y \vee y \leq x$

Guarantees

Consider the statement:
(S1) A and B are both guarantees that C is true.

1. $(A \Longrightarrow C) \wedge(B \Longrightarrow C)$ or $(A \vee B) \Longrightarrow C$
2. "Being rich and being beautiful are both guarantees that one is hated."
3. Suppose (S1) is true and A is false. What, if anything, can be determined about B and C? Briefly justify.
Nothing. It tells us nothing about C, and A is unrelated to B.
4. Suppose (S1) is true and C is false. What, if anything, can be determined about A and B? Briefly justify.
A is false and B is false. This comes from the contrapositive(s) of the implication(s), which must be true.
