CSC165 Tutorial #1

Sample Solutions

Winter 2015

Work on these exercises *before* the tutorial. You don't have to come up with complete solutions before the tutorial, but you should be prepared to discuss them with your TA.

Here are two statements, $\mathbf{S1}$ and $\mathbf{S2}$

S1: All pernicious humans are quixotic.

S2: Some quixotic humans are raffish.

Answer the questions below. There's no need to worry about the meanings of pernicious, quixotic, or raffish.

1. Draw a Venn diagram for each of the following cases. Use \mathbf{X} to indicate that a region is empty and \mathbf{O} to indicate that a region is **not** empty. Assume that U denotes the set of all humans. Define other sets that you need.

Solution: Let P denote the set of pernicious humans, Q denote the set of quixotic humans, and R denote the set of raffish humans.

• S1 is true.

• **S1** is false.

• S2 is true.

• **S2** is false.

- 2. Suppose you can be sure that **S1** is true.
 - Does knowing that somebody is pernicious tell you whether or not they are quixotic?why? Yes! S1 means that $P \subseteq Q$, so if somebody is pernicious then they are quixotic.
 - Does knowing that somebody is quixotic tell you whether or not they are pernicious?why? No! Consider for example an element $x \in Q \cap R$. x may or may not be in $x \in Q \cap R \cap P$.
 - Does knowing that somebody is not quixotic tell you whether or not they are not pernicious?why? Yes! Everything that is in P is also in Q, so if something is not in Q it cannot be in P.
 - Does knowing that somebody is not pernicious tell you whether or not they are quixotic?why? No! For example there might be elements in R that are not in P, but they may or my not be in Q.
- 3. Translate the following sentences into logical notation. Define all sets and predicate symbols that you use in the translations.
 - 0 is the smallest element of \mathbb{N} . (\mathbb{N} denotes the set of natural numbers) $\forall x \in \mathbb{N}, (0 \le x)$.
 - \mathbb{N} has a smallest element. $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, (x \le y).$
 - \mathbb{N} does not include a largest element. $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, (x < y).$
 - Every integer number is between two integer numbers. (\mathbb{Z} denotes the set of integer numbers) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \exists z \in \mathbb{Z}, (x > y) \land (x < z).$
 - Everyone is loyal to someone.
 Let H denotes the set of all humans and loyal(x, y) denotes that x is loyal to y.
 ∀x ∈ H, ∃y ∈ H, loyal(x, y).

- All Romans were either loyal to Caesar or didn't like him.
 Let R denotes the set of Romans, loyal(x, y) denotes that x is loyal to y, and likes(x, y) denotes that x likes y.
 ∀x ∈ R, loyal(x, Caesar) ∨ ¬likes(x, Caesar).
- 4. Translate the following sentences to English.
 - $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, successor(y, x).$ Every natural number has a successor.
 - ∀x ∈ N, x = 0 ∨ ∃y ∈ N, predecessor(y, x).
 Every natural number is 0 or has a predecessor.
 - ∀x ∈ N, ¬successor(0, x).
 0 is not successor of any natural number.
 - ∀x ∈ N, ¬(x = 0) ∨ ∃y ∈ N, successor(x, y).
 0 is a successor of some natural number. (Note that this statement is False)