CSC165
 Mathematical Expression and Reasoning for Computer Science

Bahar Aameri

Department of Computer Science
University of Toronto

Winter 2015

General Info

- Instructors:
- Bahar Aameri

Email: bahar at cs.toronto.edu
Office hours: Friday 12:30-1:30pm and 3:30-5pm in BA4261.

- Lisa Yan

Email: lyan at cs.toronto.edu
Office hours: Wednesday 3-5 in BA4261.

- Lectures:
- Section L0101: MWF 11-noon
- Section L0201: MWF 2-3 pm

Bahar teaches the Monday morning, Friday morning and Friday afternoon sessions.
Lisa teaches the Monday afternoon, Wednesday morning and Wednesday afternoon sessions.

Other Info

- Course web page: www.cdf.toronto.edu/~csc165h/winter
- Course info sheet (important): http://www.cdf.toronto.edu/~csc165h/winter/165infosheet.pdf
- Course Notes: http://www.cdf.toronto.edu/~csc165h/winter/165notes.pdf

Tutorials

- Section L0101: Tuesdays 2:10-3:30 pm
- Section L0201: Thursdays 2:10-3:30 pm
- Format:
- Work on some exercises (40 mins)
- Discuss solutions with the TA (20 mins)
- Take an easy quiz (10-15 mins)
- Room assignments for tutorials will be announced on the course web page by the end of Week 1.
- You must take the quizzes in the room that you are assigned to.

Tutorials start on Week 2

Course Work

Item	Due	Weight
Assignment \#1	Fri Jan 30, 11:59 pm	10%
Assignment \#2	Fri Mar 06, 11:59 pm	10%
Assignment \#3	Thu April 02, 11:59 pm	10%
Quizzes	Weeks 2, 3, 4, 6, 8, 9, 11, 12	10% (in total)
Term test \#1	Tue Feb 03 or Thu Feb 05	10%
Term test \#2	Tue Mar 10 or Thu Mar 12	10%
Final exam	Some time in April	40%

- Quizzes: at the end of tutorials (note that Week 7 is the reading week).
- Term Tests: Week 5 and Week 10, during the tutorial times.
- Final exam: In order to pass the course, you must obtain at least 40% on the final exam.

Assignments

- Assignments may be submitted in groups of up to two students.
- You may choose your group-mate from students in the other section.
- You may change your group-mate for each assignment.
- Each group must submit a single PDF file on MarkUs
- Submissions must be typed ($\mathrm{LA}_{\mathrm{E}} \mathrm{XX}$ is strongly recommended)
- Recommendation: work on all questions individually! Then discuss your answers with your group-mate and prepare the final submission together.
- Late Submission: One time 24 -hour grace period with no penalty (per person).
- Remark requests for assignments must be submitted through MarkUs within one week of receiving the assignment back.

Email Policy and Discussion Board

- General questions about the course or assignments should be submitted to the discussion board (Piazza): http://piazza.com/utoronto.ca/winter2015/csc165
- Use your UTOR email (mail.utoronto.ca) to sign up.
- The discussion board will be monitored by TAs and instructors.
- Don't discuss assignment solutions until 24h after the due dates.
- Use email only for personal issues such as requesting special considerations.

How to do well in CSC165

- Check the course web page and emails regularly.
- Come to the lectures and participate
- Work on tutorials, show your solution to the TA, ask for feedback.
- Spend 8-10 hours/week:
- 3 hours in lectures
- 2 hours in tutorial
- 3-5 hours reviewing slides and course notes, working on assignments.
- Need more practice? http://www.cdf.toronto.edu/~csc165h/winter/165PraQueSoln.pdf

Chapter 1

Introduction

What's CSC165 about?

- Logic and Mathematical Expression: how to communicate precisely using a formal language.
- Proof Techniques: how to make logical, convincing arguments.
- Algorithm Analysis and Complexity: how to prove correctness of computer programs and measure their running times.
- Basic Introduction to Computability: what computers cannot do.

Why do we need CSC165?!

As a Software Developer/Designer

- You need to communicate with your colleagues and customers about the software requirements
- You need to be able to prove that your codes satisfies the requirements
- You need to solve a mathematical problem in order to implement a requirement

As a Researcher

- Artificial intelligence \Rightarrow Mathematical Logic, Set Theory, Probability
- Cryptography \Rightarrow Number Theory, Field Theory
- Algorithm \Rightarrow Combinatorics, Set Theory
- Programming Languages \Rightarrow Mathematical Logic, Set Theory
- Databases \Rightarrow Mathematical Logic, Set Theory
- Networking \Rightarrow Graph Theory, Statistics

How to solve a problem

Understand the problem:

- Know what is required
- Know what is given
- usually the given information is necessary for solving the problem.
- BUT, sometimes completing a proof needs information that are not given but have been proved or are well-known to be true.
- Re-state the problem in your own words;
- Might help to draw some diagrams.

Plan solution(s):

- If you have seen something similar, you may be able to use its result or its method.
- Work backwards: assume you have solved the problem and deduce the next-to-last step.
- Try solving simpler versions of the problem.

How to solve a problem

Carry out your plan:

- You may need to repeat (parts of) the earlier steps.
- If you are still stuck, identify exactly what information/assumptions you require that are missing and find a way to achieve them.
Review your solution:
- Verify that your solution is correct and convincing.
- Extend the solution to new problems.

Problem Solving Exercise

Apply the problem-solving approach to the following puzzle

Streetcar Drama

On a streetcar, you overhear the following conversation:
A: Haven't seen you in a long time! How old are your three kids now?
B: The product of their ages (in years) is 36 .
A: That doesn't really answer my question.
B: Well, the sum of their ages is - [fire engine goes by]
A: Still, that doesn't tell me how old they are.
B: Well, the eldest plays piano.
A: Okay, I see: their ages are - [you have to get off the streetcar]

Problem Solving Exercise: solution

Streetcar Drama \rightarrow Understand the problem

On a streetcar, you overhear the following conversation:
A: Haven't seen you in a long time! How old are your three kids now?

B: The product of their ages (in years) is 36 .
A: That doesn't really answer my question.
B: Well, the sum of their ages is - [fire engine goes by]
A: Still, that doesn't tell me how old they are.
B: Well, the eldest plays piano.
A: Okay, I see: their ages are -
What is required?

Problem Solving Exercise: solution

Streetcar Drama \rightarrow Understand the problem

On a streetcar, you overhear the following conversation:
A: Haven't seen you in a long time! How old are your three kids now?

B: The product of their ages (in years) is 36 .
A: That doesn't really answer my question.
B: Well, the sum of their ages is - [fire engine goes by]
A: Still, that doesn't tell me how old they are.
B: Well, the eldest plays piano.
A: Okay, I see: their ages are -
What is required?
The kids ages!
Let's denote the kids' ages by \mathbf{x}, \mathbf{y} and \mathbf{z}.

Problem Solving Exercise: solution

Streetcar Drama \rightarrow Understand the problem

A: Haven't seen you in a long time! How old are your three kids now?
B: The product of their ages (in years) is $\mathbf{3 6 .} \rightarrow \mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}=\mathbf{3 6}$

B: The sum of their ages is ...
A: Still, that doesn't tell me how old they are. $\rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}$ is not unique among all possible combinations

B: Well, the eldest plays piano. $\rightarrow \mathrm{x}>\mathrm{y}$ and $\mathrm{x}>\mathrm{z}$

A: Okay, I see: their ages are $\ldots \rightarrow$ determine the value of x, y and z .

Problem Solving Exercise: solution

Streetcar Drama \rightarrow Understand the problem

- What is given?
(ㅇ) $x \cdot y \cdot z=36$ (Given)
(2) $x+y+z$ is not unique among all possible combinations (Deduced from the given info)
(3) $x>y$ and $x>z$ (well-known to be true)
- What is required?
- The value of x, y and z.

Problem Solving Exercise: solution

Streetcar Drama \rightarrow A plan for the solution

(1) $\mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z}=\mathbf{3 6}$,
(2) $x+y+z$ is not unique among all possible combinations,
(3) $x>y$ and $x>z$.

Possible Answers:

36, 1, 1
18, 2, 1
12, 3, 1
9, 4, 1
9, 2, 2
6, 6, 1
6, 3, 2
4, 3, 3

Streetcar Drama: solution

Streetcar Drama \rightarrow A plan for the solution

(1) $x \cdot y \cdot z=36$,
(2) $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is not unique among all possible combinations,
(3) $x>y$ and $x>z$.

Possible Answers:

$36,1,1$ where $\mathbf{3 6}+\mathbf{1}+\mathbf{1}=\mathbf{3 8}$
$18,2,1$ where $\mathbf{1 8}+\mathbf{2}+\mathbf{1}=\mathbf{2 1}$
$12,3,1$ where $\mathbf{1 2}+\mathbf{3}+\mathbf{1}=\mathbf{1 6}$
$9,4,1$ where $\mathbf{9}+\mathbf{4}+\mathbf{1}=\mathbf{1 4}$
$9,2,2$ where $\mathbf{9}+\mathbf{2}+\mathbf{2}=\mathbf{1 3}$
$6,6,1$ where $\mathbf{6}+\mathbf{6}+\mathbf{1}=\mathbf{1 3}$
$6,3,2$ where $\mathbf{6}+\mathbf{3}+\mathbf{2}=\mathbf{1 1}$
$4,3,3$ where $\mathbf{4}+\mathbf{3}+\mathbf{3}=\mathbf{1 0}$

Problem Solving Exercise: solution

Streetcar Drama \rightarrow A plan for the solution

(1) $x \cdot y \cdot z=36$,
(2) $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is not unique among all possible combinations,
(3) $x>y$ and $x>z$.

Possible Answers:

$36,1,1$ where $\mathbf{3 6}+\mathbf{1}+\mathbf{1}=\mathbf{3 8}$
$18,2,1$ where $\mathbf{1 8}+\mathbf{2}+\mathbf{1}=\mathbf{2 1}$
$12,3,1$ where $\mathbf{1 2}+\mathbf{3}+\mathbf{1}=\mathbf{1 6}$
$9,4,1$ where $\mathbf{9}+\mathbf{4}+\mathbf{1}=\mathbf{1 4}$
$\mathbf{9 , 2}, \mathbf{2}$ where $9+2+2=13$
$\mathbf{6 , 6}, 1$ where $\mathbf{6}+\mathbf{6}+\mathbf{1}=\mathbf{1 3}$
$6,3,2$ where $\mathbf{6}+\mathbf{3}+\mathbf{2}=\mathbf{1 1}$
$4,3,3$ where $\mathbf{4}+\mathbf{3}+\mathbf{3}=\mathbf{1 0}$

Problem Solving Exercise: solution

Streetcar Drama \rightarrow A plan for the solution

(1) $x \cdot y \cdot z=36$,
(2) $x+y+z$ is not unique among all possible combinations,
(3) $\mathrm{x}>\mathrm{y}$ and $\mathrm{x}>\mathrm{z}$.

Possible Answers:
9, 2, 2
$6,6,1$

Problem Solving Exercise: solution

Streetcar Drama \rightarrow A plan for the solution

(1) $x \cdot y \cdot z=36$,
(2) $x+y+z$ is not unique among all possible combinations,
(3) $\mathrm{x}>\mathrm{y}$ and $\mathrm{x}>\mathrm{z}$.

Possible Answers:

9, 2, 2
$6,6,1$

Problem Solving Exercise

Apply the problem-solving approach to the following puzzle

Court Case

At a murder trial, four witnesses give the following testimony.
Alice: If either Bob or Carol is innocent, then so am I.
Bob: Alice is guilty, and either Carol or Dan is guilty.
Carol: If Bob is innocent, then Dan is guilty.
Dan: If Bob is guilty, then Carol is innocent; however, Bob is innocent.

Is the testimony consistent, i.e., is it possible that everyone is telling the truth?

Problem Solving Exercise:solution

Court Case \rightarrow Restate the problem
First, we define the following abbreviations:
A: Alice is innocent
B: Bob is innocent
C: Carol is innocent
D: Dan is innocent
Then we restate the testimonies to the following form:

- Alice: if $(\mathbf{B}$ or $\mathbf{C})$ then \mathbf{A}
- Bob: (not A) and $((\operatorname{not} \mathbf{C})$ or $(\operatorname{not} \mathbf{D}))$
- Carol: if B then (not D)
- Dan: (if (not B) then \mathbf{C}) and B

Problem Solving Exercise:solution

Court Case \rightarrow A plan for the solution

- Alice: if $(\mathbf{B}$ or $\mathbf{C})$ then \mathbf{A}
- Bob: (not A) and $((\operatorname{not} \mathbf{C})$ or $(\operatorname{not} \mathbf{D}))$
- Carol: if B then (not D)
- Dan: (if (not B) then \mathbf{C}) and B
- First, we assume that all testimonies are true.
- We start by Bob's and Dan's testimonies because they make unconditional accusation/vindication:
- Bob says that Alice is not innocent (not A).
- Dan says that Bob is innocent (B).
- Then, according to the Alice's testimony Bob and Carol are not innocent (because otherwise Alice must be innocent too). But this contradicts Dan's testimony.

Therefore, at least one person is lying.

