CSC165, Winter 2015 Solutions for Lecture Exercises Feb 13, 2015

1. Consider the definition of the floor function:

$$\mathbf{D}_1: \forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, (y = \lfloor x \rfloor) \Leftrightarrow (y \le x) \land (\forall z \in \mathbb{Z}, (z \le x) \Rightarrow (z \le y)).$$

Use $\mathbf{D_1}$ to prove $\forall x \in \mathbb{R}, (|x| > x - 1).$

Proof:

Assume $x \in \mathbb{R}$. # x is a typical element of \mathbb{R} Then $\lfloor x \rfloor, \lfloor x \rfloor + 1 \in \mathbb{Z}$. # by definition of the floor function and \mathbb{Z} is closed under + And $\lfloor x \rfloor + 1 > \lfloor x \rfloor$. # add $\lfloor x \rfloor$ to 1 > 0Then $\lfloor x \rfloor + 1 > x$. # by contrapos. of the implication in \mathbf{D}_1 which is $\forall z \in \mathbb{Z}, (z > \lfloor x \rfloor) \Rightarrow (z > x)$ Then $\lfloor x \rfloor > x - 1$. # subtract 1 from both sides Then $\forall x \in \mathbb{R}, (\lfloor x \rfloor > x - 1)$. # introduced \forall

2. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow \lfloor x \rfloor \ge \lfloor y \rfloor$.

Solution: To derive a contradiction, we assume the negation of the claim.

Proof by contradiction:

Assume $\neg(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow \lfloor x \rfloor \ge \lfloor y \rfloor) \#$ to derive contradiction

Then $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, (x > y) \land (\lfloor x \rfloor < \lfloor y \rfloor) \#$ the negation Let $x_0 \in \mathbb{R}, y_0 \in \mathbb{R}$ be such that $(x_0 > y_0) \land (\lfloor x_0 \rfloor < \lfloor y_0 \rfloor)$. # instantiate \exists Then $\lfloor x_0 \rfloor < \lfloor y_0 \rfloor \#$ conjunction elimination And $\lfloor x_0 \rfloor \in \mathbb{Z}, \lfloor y_0 \rfloor \in \mathbb{Z} \#$ by definition of floor Then $\lfloor x_0 \rfloor + 1 \leq \lfloor y_0 \rfloor \#$ the smallest possible difference between two distinct integers is 1 Then $\lfloor x_0 \rfloor + 1 \leq y_0 \#$ since $\lfloor y_0 \rfloor \leq y_0$ by definition of $\lfloor y_0 \rfloor$ Then $\lfloor x_0 \rfloor + 1 < x_0 \# y_0 < x_0$ by the assumption and < is transitive And $\lfloor x_0 \rfloor + 1 \in \mathbb{Z} \# 1, \lfloor x_0 \rfloor \in \mathbb{Z}$ and \mathbb{Z} is closed under + Then $\lfloor x_0 \rfloor + 1 \leq \lfloor x_0 \rfloor \#$ by definition of $\lfloor x_0 \rfloor$ that $\forall z \in \mathbb{Z}, z \leq x_0 \Rightarrow z \leq \lfloor x_0 \rfloor$ Then $1 \leq 0 \#$ subtract $\lfloor x_0 \rfloor$ from both sides, and contradiction with that 1 > 0

Then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow \lfloor x \rfloor \geq \lfloor y \rfloor \#$ negation of assumption because of contradiction

3. For $x \in \mathbb{R}$, define |x| by

$$|x| = \begin{cases} -x, & x < 0\\ x, & x \ge 0 \end{cases}$$

Prove that $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x||y| = |xy|$.

Solution: For each variable we must consider two cases: in one case the variable is ≥ 0 and in the other one the variable is < 0. Since we have two variables we must have four cases in our proof.

Proof:

Assume $x, y \in \mathbb{R}$. # x and y are typical elements of \mathbb{R} Case 1: x < 0 and y < 0. Then |x| = -x and |y| = -y. # definition of |x| and |y|Then |x||y| = (-x)(-y) = xy. # since $(-1)^2 = 1$ And xy > 0. # the product of two negative numbers is positive Then xy = |xy|. # definition of |xy| when $xy \ge 0$ Then |x||y| = |xy|. Case 2: x < 0 and $y \ge 0$. Then |x| = -x and |y| = y. # definition of |x| and |y|Then |x||y| = -xy. # algebra And $xy \leq 0$. # product of a negative and a non-negative number is either 0 or negative Case 2.1: Assume xy < 0. Then |xy| = -xy. # by the definition of |xy|Case 2.2: Assume xy = 0. Then |xy| = 0 = -xy. # product of any number and 0 is 0, and by the definition of |xy|Then |xy| = -xy. # true for both possible cases Then |x||y| = |xy|. # we showed that both are equal to -xyCase 3: $x \ge 0$ and y < 0. Then |x| = x and |y| = -y. # definition of |x| and |y|Then |x||y| = -xy. # algebra And $xy \leq 0$. # product of a non-negative number with a negative number is non-positive Case 3.1: Assume xy < 0. Then |xy| = -xy. # by the definition of |xy|Case 3.2: Assume xy = 0. Then |xy| = 0 = -xy. # product of any number and 0 is 0, and by the definition of |xy|Then |xy| = -xy. # true for both possible cases Then |x||y| = |xy|. # we showed that both are equal to -xyCase 4: $x \ge 0$ and $y \ge 0$. Then |x||y| = xy. # |x| = x and |y| = y by definition of |x| and |y|And $xy \ge 0$. # the product of two non-negative numbers is non-negative Then |xy| = xy. # definition of |xy|Then |x||y| = |xy|. # both are equal to xyThen |x||y| = |xy|. # true for all possible cases Then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x||y| = |xy|$. # introduced \forall