
CSC165, Winter 2015

Solutions for Lecture Exercises

Feb 13, 2015

1. Consider the definition of the floor function:

D1 :∀x ∈ R,∀y ∈ Z, (y = bxc)⇔ (y ≤ x) ∧ (∀z ∈ Z, (z ≤ x)⇒ (z ≤ y)).

Use D1 to prove ∀x ∈ R, (bxc > x− 1).

Proof:

Assume x ∈ R. # x is a typical element of R
Then bxc, bxc+ 1 ∈ Z. # by definition of the floor function and Z is closed under +
And bxc+ 1 > bxc. # add bxc to 1 > 0
Then bxc+1 > x. # by contrapos. of the implication in D1 which is ∀z ∈ Z, (z > bxc) ⇒ (z > x)

Then bxc > x− 1. # subtract 1 from both sides
Then ∀x ∈ R, (bxc > x− 1). # introduced ∀

2. ∀x ∈ R,∀y ∈ R, x > y ⇒ bxc ≥ byc.
Solution: To derive a contradiction, we assume the negation of the claim.

Proof by contradiction:

Assume ¬(∀x ∈ R,∀y ∈ R, x > y ⇒ bxc ≥ byc) # to derive contradiction

Then ∃x ∈ R,∃y ∈ R, (x > y) ∧ (bxc < byc) # the negation

Let x0 ∈ R, y0 ∈ R be such that (x0 > y0) ∧ (bx0c < by0c). # instantiate ∃
Then bx0c < by0c # conjunction elimination

And bx0c ∈ Z, by0c ∈ Z # by definition of floor

Then bx0c+ 1 ≤ by0c # the smallest possible difference between two distinct integers is 1

Then bx0c+ 1 ≤ y0 # since by0c ≤ y0 by definition of by0c
Then bx0c+ 1 < x0 # y0 < x0 by the assumption and < is transitive

And bx0c+ 1 ∈ Z # 1, bx0c ∈ Z and Z is closed under +

Then bx0c+ 1 ≤ bx0c # by definition of bx0c that ∀z ∈ Z, z ≤ x0 ⇒ z ≤ bx0c
Then 1 ≤ 0 # subtract bx0c from both sides, and contradiction with that 1 > 0

Then ∀x ∈ R,∀y ∈ R, x > y ⇒ bxc ≥ byc # negation of assumption because of contradiction
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3. For x ∈ R, define |x| by

|x| =

{
−x, x < 0

x, x ≥ 0

Prove that ∀x ∈ R,∀y ∈ R, |x||y| = |xy|.
Solution: For each variable we must consider two cases: in one case the variable is ≥ 0 and in the
other one the variable is < 0. Since we have two variables we must have four cases in our proof.

Proof:

Assume x, y ∈ R. # x and y are typical elements of R
Case 1: x < 0 and y < 0.

Then |x| = −x and |y| = −y. # definition of |x| and |y|
Then |x||y| = (−x)(−y) = xy. # since (−1)2 = 1
And xy > 0. # the product of two negative numbers is positive
Then xy = |xy|. # definition of |xy| when xy ≥ 0 Then |x||y| = |xy|.

Case 2: x < 0 and y ≥ 0.
Then |x| = −x and |y| = y. # definition of |x| and |y|
Then |x||y| = −xy. # algebra
And xy ≤ 0. # product of a negative and a non-negative number is either 0 or negative

Case 2.1: Assume xy < 0.
Then |xy| = −xy. # by the definition of |xy|

Case 2.2: Assume xy = 0.
Then |xy| = 0 = −xy. # product of any number and 0 is 0, and by the definition of |xy|

Then |xy| = −xy. # true for both possible cases
Then |x||y| = |xy|. # we showed that both are equal to −xy

Case 3: x ≥ 0 and y < 0.
Then |x| = x and |y| = −y. # definition of |x| and |y|
Then |x||y| = −xy. # algebra
And xy ≤ 0. # product of a non-negative number with a negative number is non-positive

Case 3.1: Assume xy < 0.
Then |xy| = −xy. # by the definition of |xy|

Case 3.2: Assume xy = 0.
Then |xy| = 0 = −xy. # product of any number and 0 is 0, and by the definition of |xy|

Then |xy| = −xy. # true for both possible cases
Then |x||y| = |xy|. # we showed that both are equal to −xy

Case 4: x ≥ 0 and y ≥ 0.
Then |x||y| = xy. # |x| = x and |y| = y by definition of |x| and |y|
And xy ≥ 0. # the product of two non-negative numbers is non-negative

Then |xy| = xy. # definition of |xy|
Then |x||y| = |xy|. # both are equal to xy

Then |x||y| = |xy|. # true for all possible cases
Then ∀x ∈ R, ∀y ∈ R, |x||y| = |xy|. # introduced ∀
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