CSC165, Winter 2015 Solutions for Lecture Exercises
 Feb 13, 2015

1. Consider the definition of the floor function:

$$
\mathbf{D}_{\mathbf{1}}: \forall x \in \mathbb{R}, \forall y \in \mathbb{Z},(y=\lfloor x\rfloor) \Leftrightarrow(y \leq x) \wedge(\forall z \in \mathbb{Z},(z \leq x) \Rightarrow(z \leq y)) .
$$

Use $\mathbf{D}_{\mathbf{1}}$ to prove $\forall x \in \mathbb{R},(\lfloor x\rfloor>x-1)$.
Proof:
Assume $x \in \mathbb{R} . \quad \# x$ is a typical element of \mathbb{R}
Then $\lfloor x\rfloor,\lfloor x\rfloor+1 \in \mathbb{Z} . \quad$ \# by definition of the floor function and \mathbb{Z} is closed under + And $\lfloor x\rfloor+1>\lfloor x\rfloor$. \# add $\lfloor x\rfloor$ to $1>0$
Then $\lfloor x\rfloor+1>x$. \# by contrapos. of the implication in $\mathbf{D}_{\mathbf{1}}$ which is $\forall z \in \mathbb{Z},(z>\lfloor x\rfloor) \Rightarrow(z>x)$ Then $\lfloor x\rfloor>x-1$. \# subtract 1 from both sides
Then $\forall x \in \mathbb{R},(\lfloor x\rfloor>x-1)$. \# introduced \forall
2. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor$.

Solution: To derive a contradiction, we assume the negation of the claim.

Proof by contradiction:

Assume $\neg(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor)$ \# to derive contradiction
Then $\exists x \in \mathbb{R}, \exists y \in \mathbb{R},(x>y) \wedge(\lfloor x\rfloor<\lfloor y\rfloor) \#$ the negation
Let $x_{0} \in \mathbb{R}, y_{0} \in \mathbb{R}$ be such that $\left(x_{0}>y_{0}\right) \wedge\left(\left\lfloor x_{0}\right\rfloor<\left\lfloor y_{0}\right\rfloor\right)$. \# instantiate \exists
Then $\left\lfloor x_{0}\right\rfloor<\left\lfloor y_{0}\right\rfloor$ \# conjunction elimination
And $\left\lfloor x_{0}\right\rfloor \in \mathbb{Z},\left\lfloor y_{0}\right\rfloor \in \mathbb{Z} \#$ by definition of floor
Then $\left\lfloor x_{0}\right\rfloor+1 \leq\left\lfloor y_{0}\right\rfloor$ \# the smallest possible difference between two distinct integers is 1
Then $\left\lfloor x_{0}\right\rfloor+1 \leq y_{0} \#$ since $\left\lfloor y_{0}\right\rfloor \leq y_{0}$ by definition of $\left\lfloor y_{0}\right\rfloor$
Then $\left\lfloor x_{0}\right\rfloor+1<x_{0} \# y_{0}<x_{0}$ by the assumption and $<$ is transitive
And $\left\lfloor x_{0}\right\rfloor+1 \in \mathbb{Z} \# 1,\left\lfloor x_{0}\right\rfloor \in \mathbb{Z}$ and \mathbb{Z} is closed under +
Then $\left\lfloor x_{0}\right\rfloor+1 \leq\left\lfloor x_{0}\right\rfloor$ \# by definition of $\left\lfloor x_{0}\right\rfloor$ that $\forall z \in \mathbb{Z}, z \leq x_{0} \Rightarrow z \leq\left\lfloor x_{0}\right\rfloor$
Then $1 \leq 0$ \# subtract $\left\lfloor x_{0}\right\rfloor$ from both sides, and contradiction with that $1>0$
Then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor$ \# negation of assumption because of contradiction
3. For $x \in \mathbb{R}$, define $|x|$ by

$$
|x|= \begin{cases}-x, & x<0 \\ x, & x \geq 0\end{cases}
$$

Prove that $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},|x||y|=|x y|$.
Solution: For each variable we must consider two cases: in one case the variable is ≥ 0 and in the other one the variable is <0. Since we have two variables we must have four cases in our proof.

Proof:

Assume $x, y \in \mathbb{R} . \quad \# x$ and y are typical elements of \mathbb{R}
Case 1: $x<0$ and $y<0$.
Then $|x|=-x$ and $|y|=-y . \quad$ \# definition of $|x|$ and $|y|$
Then $|x||y|=(-x)(-y)=x y . \quad \#$ since $(-1)^{2}=1$
And $x y>0$. \# the product of two negative numbers is positive
Then $x y=|x y| . \quad$ \# definition of $|x y|$ when $x y \geq 0$ Then $|x||y|=|x y|$.
Case 2: $x<0$ and $y \geq 0$.
Then $|x|=-x$ and $|y|=y . \quad \#$ definition of $|x|$ and $|y|$
Then $|x||y|=-x y$. \# algebra
And $x y \leq 0 . \quad \#$ product of a negative and a non-negative number is either 0 or negative
Case 2.1: Assume $x y<0$.
Then $|x y|=-x y . \quad \#$ by the definition of $|x y|$
Case 2.2: Assume $x y=0$.
Then $|x y|=0=-x y . \quad \#$ product of any number and 0 is 0 , and by the definition of $|x y|$
Then $|x y|=-x y$. \# true for both possible cases
Then $|x||y|=|x y|$. \# we showed that both are equal to $-x y$
Case 3: $x \geq 0$ and $y<0$.
Then $|x|=x$ and $|y|=-y . \quad$ \# definition of $|x|$ and $|y|$
Then $|x||y|=-x y$. \# algebra
And $x y \leq 0 . \quad \#$ product of a non-negative number with a negative number is non-positive
Case 3.1: Assume $x y<0$.
Then $|x y|=-x y . \quad \#$ by the definition of $|x y|$
Case 3.2: Assume $x y=0$.
Then $|x y|=0=-x y . \quad \#$ product of any number and 0 is 0 , and by the definition of $|x y|$
Then $|x y|=-x y$. \# true for both possible cases
Then $|x||y|=|x y|$. \# we showed that both are equal to $-x y$
Case 4: $x \geq 0$ and $y \geq 0$.
Then $|x||y|=x y . \quad \#|x|=x$ and $|y|=y$ by definition of $|x|$ and $|y|$
And $x y \geq 0$. \# the product of two non-negative numbers is non-negative
Then $|x y|=x y . \quad \#$ definition of $|x y|$
Then $|x||y|=|x y| . \quad$ \# both are equal to $x y$
Then $|x||y|=|x y| . \quad \#$ true for all possible cases
Then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},|x||y|=|x y| . \quad \#$ introduced \forall

