CSC165: Final Exam Review

Lisa Yan

Department of Computer Science University of Toronto

March 30 & April 1, 2015

Ξ 9Q (~

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

- Final exam: April 9, 9-12, EX200
- Support:
 - Office hours: (over 40 hours) check course website for update
 - Help Centre schedule: link ¹

¹The exam times listed in the Help Centre calendar are unofficial and may be incorrect. It is very important that you double-check your exam times on the official time table.

Overview

- Logical notation: translate sentences using logical expression
- Evaluate statement: true or false
 - how to evaluate: truth table or manipulation rule to prove it
 - some concepts: tautology / satisfiability / unsatisfiability
- Formal proof: statement true or false Prove a statement using logical consequence, to derive a conclusion from given assumptions
 - direct proof: $P \Rightarrow Q$
 - indirect proof: contraposition & contradiction
- Algorithm analysis using asymptotic notation
 - $\mathcal{O}, \Omega, \Theta$
 - proof

Logical notation: use logical expression

- Translate sentences using logical expression
 - quantifiers: \forall, \exists
 - predicates: P(x)
 - \land,\lor,\lnot
 - $\bullet \ \rightarrow, \longleftrightarrow$
- Evaluate statement: true or false
 - how to evaluate: truth table / manipulation rules to prove it
 - some concepts: tautology / satisfiability / unsatisfiability

Review exercises • test 1 • assignment 1 • tutorial 1-3

3

Sar

(日)

Manipulation Rules

• Identity $P \land (Q \lor \neg Q) \iff P$ $P \lor (Q \land \neg Q) \iff P$

Idempotency

- $\begin{array}{c} P \land P \Longleftrightarrow P \\ P \lor P & \Longleftrightarrow P \end{array}$
- Commutativity

$$\begin{array}{l} P \land Q \Longleftrightarrow Q \land P \\ P \lor Q \Longleftrightarrow Q \lor P \\ (P \Leftrightarrow Q) \Longleftrightarrow (Q \Leftrightarrow P) \end{array}$$

Associativity

 $\begin{array}{l} (P \wedge Q) \wedge R \Longleftrightarrow P \wedge (Q \wedge R) \\ (P \vee Q) \vee R \Longleftrightarrow P \vee (Q \vee R) \end{array}$

Distributivity

 $\begin{array}{l} P \land (Q \lor R) \Longleftrightarrow (P \land Q) \lor (P \land R) \\ P \lor (Q \land R) \Longleftrightarrow (P \lor Q) \land (P \lor R) \end{array}$

DeMorgan's laws

$$\neg (P \land Q) \Longleftrightarrow \neg P \lor \neg Q$$
$$\neg (P \lor Q) \Longleftrightarrow \neg P \land \neg Q$$

Lisa Yan (University of Toronto)

Prove a statement true of false, using derived logical consequences from given assumptions (P), to a conclusion (Q).

- Direct proof: $P \Rightarrow Q$
- Indirect proof:
 - by contraposition: $\neg Q \Rightarrow \neg P$
 - by contradiction: $\neg(P \Rightarrow Q)$

Formal proofs

Reviewing exercises

- test 2
- assignment 2
- tutorial 4-5

TIPS

Proof techniques:

direct / indirect proofs / disproofs (negate and prove the negation)

- Proof structures:
 - Keywords: assume, pick, let, then – should match the quantifier (ordered) in the statement to prove.
 - indentations
 - comment/justification: critical for important steps.
- Types of questions: related to what we have practiced in the course

Ja C

イロト イポト イヨト イヨト 二日

Proof Structure

General Structure of a Typical Proof

- Given a set of ASSUMPTIONS, prove a CLAIM.
 - Start from the assumptions.
 - Derive a logical consequence, based on the assumptions.
 - Add the new consequence to the original set of assumptions.
 - Continue until the claim can be derived from the assumptions.

Logical proofs: exercises

Lisa Yan (University of Toronto)

999

イロト イロト イヨト イヨト 一臣

Algorithm analysis using asymptotic notation

- $\mathcal{O}, \Omega, \Theta$
- find & prove bounds
 - · Worst-case run time analysis: exact step expression
 - polynomial expressions
 - limit definition
 - induction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

$$\mathcal{O}(f) = \{g : \mathbb{N} \to \mathbb{R}^{\geq 0} \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \leqslant cf(n) \}.$$

$$\Omega(f) = \left\{ g: \mathbb{N} \to \mathbb{R}^{\geq 0} \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \geq cf(n) \right\}.$$

$$\Theta(f) = \left\{ g: \mathbb{N} \to \mathbb{R}^{\ge 0} \mid \exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow c_1 f(n) \leqslant g(n) \right\}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \iff \forall \varepsilon \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow L - \varepsilon < \frac{f(n)}{g(n)} < L + \varepsilon$$

 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \iff \forall \varepsilon \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow \frac{f(n)}{g(n)} > \varepsilon$

Lisa Yan (University of Toronto)

Induction

Basic steps for simple induction:

prove the base case (which may now be greater than 0) prove the induction step

1

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Asymptotic notation: exercises

Reviewing exercises

- assignment 3
- tutorial 6-7

TIPS

for polynomials:

use the standard procedure with a chain of overestimate and underestimate

• for non-polynomials:

use calculus (possibly L'Hopital) to prove limit, translate to definition of limit, then relate it to the definition of \mathcal{O} review calculus: know basic rules of taking derivatives

Э

San

(日)

Asymptotic notation: exercises

1
$$n^{6} \notin \mathcal{O}(3n^{5})$$
.
2 $n^{2} + n \in \Omega(15n^{2} + 3)$.
 $n^{2} + n \in \mathcal{O}(15n^{2} + 3)$.
3 $3n^{2} + 2n \in \Theta(n^{2})$.
4 $n * floor(n/2) \in \mathcal{O}(n^{2})$.
5 $f(n) = \max(n^{2}, 100)(3n + 1) - 5$, find the tight bound for $f(n)$, and prove it.

E

590

イロト イヨト イヨト イヨト

Asymptotic notation: exercises

1. Prove: $n^6 \notin \mathcal{O}(3n^5)$ Let $g(n) = n^6$, $f(n) = 3n^5$ We rely on the fact that $\lim_{n\to\infty} n^6/3n^5 = \infty$.² Assume $c \in \mathbb{R}^+$, assume $B \in \mathbb{N}$. # arbitrary values Then $\exists n_0 \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow n^6/3n^5 > c$. # definition of $\lim_{n\to\infty} n^6/3n^5 = \infty$, then $n^6/3n^5 > \varepsilon$, let $\varepsilon = c$ Let $n' = \max(B, n_0)$, $n' \in \mathbb{N}$ Then $n' \ge n_0$, $n' \ge B$, $n'^6 > c \cdot 3n'^5$ # max definition; limit definition: $n^6/3n^5 > c$ Then $n' \ge B \land (n'^6 > c \cdot 3n'^5)$. # introduce \land Then $\exists n \in \mathbb{N}$, $n \ge B \land g(n) > cf(n)$. # introduce \exists Then $\forall c \in \mathbb{R}^+$, $\forall B \in \mathbb{N}$, $\exists n \in \mathbb{N}$, $n \ge B \land g(n) > cf(n)$. # introduce \forall

²Applying l'Hôpital's Rule

Lisa Yan (University of Toronto)

San

Let $f(n) = \max(n^2, 100)(3n+1) - 5$, and $g(n) = n^3$. Then $f \in \Theta(g)$ - 1

SOLUTION:
Let
$$c_1 = 1$$
 and $c_2 = 395$; then $c_1, c_2 \in \mathbb{R}^+$
Let $B' = 1$; then $B' \in \mathbb{N}$
Assume $n \ge B', n \in \mathbb{N}$
Case 1: $n \le 10$, then $\max(n^2, 100) = 100$
// Proving $f \ge c \cdot g$
Then $f(n) = 300n + 100 - 5 = 300n + 95$
 $\ge 300n \# 95 \in \mathbb{N}$
 $\ge (n^2)n \# n^2 \le 100 < 300, n \le 10$
 $= 1 \cdot n^3 = c_1g(n)$
Then $f(n) \ge c_1 \cdot g(n)$
// Proving $f \le c \cdot g$
Then $f(n) = 300n + 100 - 5 = 300n + 95$
 $\le 300n + 95n \# n \in \mathbb{N}, n \ge 1$
 $\le 395n^3 \# n \in \mathbb{N}, n^3 > n$
 $= 395 \cdot n^3 = c_2g(n)$
Then $f(n) \le c_2 \cdot g(n)$

Lisa Yan (University of Toronto)

Mathematical Expression and Reasoning

Let $f(n) = \max(n^2, 100)(3n + 1) - 5$, and $g(n) = n^3$. Then $f \in \Theta(g)$ - 2

SOLUTION:

Case 2: n > 10. then $\max(n^2, 100) = n^2$: // Proving $f > c \cdot q$ Then $f(n) = 3n^3 + n^2 - 5$ $> 3n^3 - 5 \# n^2 \in \mathbb{N}$ $= n^3 + 2n^3 - 5$ $> 1 \cdot n^3 = c_1 q(n) \#$ for $n > 10, 2n^3 - 5 > 0$ Then $f(n) > c_1 \cdot q(n)$ // Proving f < qThen $f(n) = 3n^3 + n^2 - 5$ $< 3n^3 + n^2 \quad \# 5 \in \mathbb{N}$ $< 3n^3 + n^3 = 4n^3 \quad \# n \in \mathbb{N}$ $< 395 \cdot n^3 = c_2 a(n)$

Then $f(n) \leq c_2 \cdot g(n)$

Lisa Yan (University of Toronto)

March 30 & April 1, 2015 17 / 18

Let $f(n) = \max(n^2, 100)(3n+1) - 5$, and $g(n) = n^3$. Then $f \in \Theta(g)$ - 3

SOLUTION:
Let
$$c_1 = 1$$
 and $c_2 = 395$; then $c_1, c_2 \in \mathbb{R}^+$
Let $B' = 1$; then $B' \in \mathbb{N}$
Assume $n \ge B', n \in \mathbb{N}$
Case 1: $n \le 10$, then $\max(n^2, 100) = 100$
...
Case 2: $n > 10$, then $\max(n^2, 100) = n^2$;
...
Then $\forall n \in \mathbb{N}, n \ge B' \Rightarrow c_1g(n) \le f(n) \le c_2g(n)$
Then $\exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow c_1g(n) \le f(n) \le c_2g(n)$
Then $\exists c_1, c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow c_1g(n) \le f(n) \le c_2g(n)$
Then $f \in \Theta(g)$

200

(日) (四) (三) (三) (三)