CSC165: Final Exam Review

Lisa Yan

Department of Computer Science
University of Toronto

March 30 \& April 1, 2015

Announcements

- Final exam: April 9, 9-12, EX200
- Support:
- Office hours: (over 40 hours) check course website for update
- Help Centre schedule: link ${ }^{1}$

[^0]
Overview

- Logical notation: translate sentences using logical expression
- Evaluate statement: true or false
- how to evaluate: truth table or manipulation rule to prove it
- some concepts: tautology / satisfiability / unsatisfiability
- Formal proof: statement true or false Prove a statement using logical consequence, to derive a conclusion from given assumptions
- direct proof: $P \Rightarrow Q$
- indirect proof: contraposition \& contradiction
- Algorithm analysis using asymptotic notation
- $\mathcal{O}, \Omega, \Theta$
- proof

Logical notation: use logical expression

- Translate sentences using logical expression
- quantifiers: \forall, \exists
- predicates: $P(x)$
- \wedge, \vee, \neg
$\rightarrow, \longleftrightarrow$
- Evaluate statement: true or false
- how to evaluate: truth table / manipulation rules to prove it
- some concepts: tautology / satisfiability / unsatisfiability

Review exercises

- test 1
- assignment 1
- tutorial 1-3

Manipulation Rules

- Identity
$P \wedge(Q \vee \neg Q) \Longleftrightarrow P$
$P \vee(Q \wedge \neg Q) \Longleftrightarrow P$
- Idempotency
$P \wedge P \Longleftrightarrow P$
$P \vee P \Longleftrightarrow P$
- Commutativity
$P \wedge Q \Longleftrightarrow Q \wedge P$
$P \vee Q \Longleftrightarrow Q \vee P$
$(P \Leftrightarrow Q) \Longleftrightarrow(Q \Leftrightarrow P)$
- Associativity $(P \wedge Q) \wedge R \Longleftrightarrow P \wedge(Q \wedge R)$ $(P \vee Q) \vee R \Longleftrightarrow P \vee(Q \vee R)$
- Distributivity
$P \wedge(Q \vee R) \Longleftrightarrow(P \wedge Q) \vee(P \wedge R)$
$P \vee(Q \wedge R) \Longleftrightarrow(P \vee Q) \wedge(P \vee R)$
- DeMorgan's laws
$\neg(P \wedge Q) \Longleftrightarrow \neg P \vee \neg Q$

Formal proofs: prove statements true or false

Prove a statement true of false, using derived logical consequences from given assumptions (P), to a conclusion (Q).

- Direct proof: $P \Rightarrow Q$
- Indirect proof:
- by contraposition: $\neg Q \Rightarrow \neg P$
- by contradiction: $\neg(P \Rightarrow Q)$

Formal proofs

Reviewing exercises

- test 2
- assignment 2
- tutorial 4-5

TIPS

- Proof techniques: direct / indirect proofs / disproofs (negate and prove the negation)
- Proof structures:
- Keywords:
assume, pick, let, then - should match the quantifier (ordered) in the statement to prove.
- indentations
- comment/justification: critical for important steps.
- Types of questions: related to what we have practiced in the course

Proof Structure

General Structure of a Typical Proof

- Given a set of ASSUMPTIONS, prove a CLAIM.
- Start from the assumptions.
- Derive a logical consequence, based on the assumptions.
- Add the new consequence to the original set of assumptions.
- Continue until the claim can be derived from the assumptions.

Prove $P \Rightarrow Q$

- Given P, prove Q :

Assume P. \# Given assumption
Then \mathbf{R}_{1}. \# by P or another known fact
Then $\mathbf{R}_{\mathbf{2}}$. \# by R_{1} or another known fact

Then $\mathbf{R}_{\mathbf{n}}$. \# by R_{n-1} or another known fact
Then \mathbf{Q}. \# by R_{n} or another known fact

Logical proofs: exercises

Algorithm analysis using asymptotic notation

- $\mathcal{O}, \Omega, \Theta$
- find \& prove bounds
- Worst-case run time analysis: exact step expression
- polynomial expressions
- limit definition
- induction

Definitions

$$
\begin{aligned}
& \mathcal{O}(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \leqslant c f(n)\right\} . \\
& \Omega(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \geqslant c f(n)\right\} . \\
& \Theta(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c_{1} \in \mathbb{R}^{+}, \exists c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow c_{1} f(n) \leqslant g(n\right. \\
& \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L \Longleftrightarrow \forall \varepsilon \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow L-\varepsilon<\frac{f(n)}{g(n)}<L+\varepsilon
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty \Longleftrightarrow \forall \varepsilon \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow \frac{f(n)}{g(n)}>\varepsilon
$$

Induction

Basic steps for simple induction:
prove the base case (which may now be greater than 0) prove the induction step

Asymptotic notation: exercises

Reviewing exercises

- assignment 3
- tutorial 6-7

TIPS

- for polynomials: use the standard procedure with a chain of overestimate and underestimate
- for non-polynomials: use calculus (possibly L'Hopital) to prove limit, translate to definition of limit, then relate it to the definition of \mathcal{O} review calculus: know basic rules of taking derivatives

Asymptotic notation: exercises

```
\(1 n^{6} \notin \mathcal{O}\left(3 n^{5}\right)\).
\(2 n^{2}+n \in \Omega\left(15 n^{2}+3\right)\).
    \(n^{2}+n \in \mathcal{O}\left(15 n^{2}+3\right)\).
\(33 n^{2}+2 n \in \Theta\left(n^{2}\right)\).
\(4 n *\) floor \((n / 2) \in \mathcal{O}\left(n^{2}\right)\).
\(5 f(n)=\max \left(n^{2}, 100\right)(3 n+1)-5\), find the tight bound for \(f(n)\), and prove it.
```


Asymptotic notation: exercises

1. Prove: $n^{6} \notin \mathcal{O}\left(3 n^{5}\right)$

Let $g(n)=n^{6}, f(n)=3 n^{5}$
We rely on the fact that $\lim _{n \rightarrow \infty} n^{6} / 3 n^{5}=\infty$. ${ }^{2}$
Assume $c \in \mathbb{R}^{+}$, assume $B \in \mathbb{N}$. \# arbitrary values
Then $\exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow n^{6} / 3 n^{5}>c$.
\# definition of $\lim _{n \rightarrow \infty} n^{6} / 3 n^{5}=\infty$, then $n^{6} / 3 n^{5}>\varepsilon$, let $\varepsilon=c$
Let $n^{\prime}=\max \left(B, n_{0}\right), n^{\prime} \in \mathbb{N}$
Then $n^{\prime} \geqslant n_{0}, n^{\prime} \geqslant B, n^{\prime 6}>c \cdot 3 n^{5}$
\# max definition; limit definition: $n^{6} / 3 n^{5}>c$
Then $n^{\prime} \geqslant B \wedge\left(n^{\prime 6}>c \cdot 3 n^{\prime 5}\right)$. \# introduce \wedge
Then $\exists n \in \mathbb{N}, n \geqslant B \wedge g(n)>c f(n) . \quad$ \# introduce \exists
Then $\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geqslant B \wedge g(n)>c f(n) . \quad$ \# introduce \forall

[^1]Let $f(n)=\max \left(n^{2}, 100\right)(3 n+1)-5$, and $g(n)=n^{3}$. Then $f \in \Theta(g)-1$

SOLUTION:

Let $c_{1}=1$ and $c_{2}=395$; then $c_{1}, c_{2} \in \mathbb{R}^{+}$
Let $B^{\prime}=1$; then $B^{\prime} \in \mathbb{N}$
Assume $n \geq B^{\prime}, n \in \mathbb{N}$
Case 1: $n \leq 10$, then $\max \left(n^{2}, 100\right)=100$
// Proving $f \geq c \cdot g$
Then $f(n)=300 n+100-5=300 n+95$

$$
\begin{aligned}
& \geq 300 n \quad \# 95 \in \mathbb{N} \\
& \geq\left(n^{2}\right) n \quad \# n^{2} \leq 100<300, n \leq 10 \\
& =1 \cdot n^{3}=c_{1} g(n)
\end{aligned}
$$

Then $f(n) \geq c_{1} \cdot g(n)$
// Proving $f \leq c \cdot g$
Then $f(n)=300 n+100-5=300 n+95$

$$
\begin{aligned}
& \leq 300 n+95 n \quad \# n \in \mathbb{N}, n \geq 1 \\
& \leq 395 n^{3} \quad \# n \in \mathbb{N}, n^{3}>n \\
& =395 \cdot n^{3}=c_{2} g(n)
\end{aligned}
$$

Then $f(n) \leq c_{2} \cdot g(n)$

Let $f(n)=\max \left(n^{2}, 100\right)(3 n+1)-5$, and $g(n)=n^{3}$. Then $f \in \Theta(g)-2$
Solution:
Case 2: $n>10$, then $\max \left(n^{2}, 100\right)=n^{2}$;
// Proving $f \geq c \cdot g$
Then $f(n)=3 n^{3}+n^{2}-5$

$$
\begin{aligned}
& \geq 3 n^{3}-5 \quad \# n^{2} \in \mathbb{N} \\
& =n^{3}+2 n^{3}-5 \\
& \geq 1 \cdot n^{3}=c_{1} g(n) \quad \# \text { for } n>10,2 n^{3}-5>0
\end{aligned}
$$

Then $f(n) \geq c_{1} \cdot g(n)$
// Proving $f \leq g$
Then $f(n)=3 n^{3}+n^{2}-5$

$$
\begin{aligned}
& \leq 3 n^{3}+n^{2} \quad \# 5 \in \mathbb{N} \\
& \leq 3 n^{3}+n^{3}=4 n^{3} \quad \# n \in \mathbb{N} \\
& \leq 395 \cdot n^{3}=c_{2} g(n)
\end{aligned}
$$

Then $f(n) \leq c_{2} \cdot g(n)$

Let $f(n)=\max \left(n^{2}, 100\right)(3 n+1)-5$, and $g(n)=n^{3}$. Then $f \in \Theta(g)-3$

Solution:

Let $c_{1}=1$ and $c_{2}=395$; then $c_{1}, c_{2} \in \mathbb{R}^{+}$
Let $B^{\prime}=1$; then $B^{\prime} \in \mathbb{N}$
Assume $n \geq B^{\prime}, n \in \mathbb{N}$
Case 1: $n \leq 10$, then $\max \left(n^{2}, 100\right)=100$
Case 2: $n>10$, then $\max \left(n^{2}, 100\right)=n^{2}$;
Then $\forall n \in \mathbb{N}, n \geq B^{\prime} \Rightarrow c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
Then $\exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
Then $\exists c_{1}, c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
Then $f \in \Theta(g)$

[^0]: ${ }^{1}$ The exam times listed in the Help Centre calendar are unofficial and may be incorrect. It is very important that you double-check your exam times on the official time table.

[^1]: ${ }^{2}$ Applying l'Hôpital's Rule

