Chapter 4

Algorithm Analysis and Asymptotic Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Feb 27, 2015

Announcements

- Assignment 2 is due next Friday Mar 06, before midnight.
- TA office Hours for Assignment 2:
- Tuesday, Mar 03, 4-6pm in BA3201
- Thursday, Mar 05, 10am-noon, 4-8pm in BA3201
- Term Test 2:
- Section L0101: Tuesday Mar 10, 2:10-3:30 Location: EX100
- Section L0201: Thursday Mar 12, 2:10-3:30 Location: EX100
- You must write the test in the section that you are enrolled in, unless you have talked to the instructors and they allowed you to switch.
- Content: Chapter 3. Review lecture and course notes!

Today's Topics

- Review: Asymptotic Notation
- Example: Asymptotic Notation
- Limits and Asymptotic Notation

Chapter 4

Algorithm Analysis and Asymptotic Notation

Review: Asymptotic Notation

Review: Asymptotic Notation

Big-Oh

- $\mathbf{f} \in \mathcal{O}(\mathbf{g}): g$ is an upper bound of f.
- For sufficiently large values of $n, g(n)$ multiply by a constant is always greater than $f(n)$.
- $\exists \mathbf{c} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow f(n) \leq \mathbf{c} . g(n)$

Review: Asymptotic Notation

Big-Oh

- $\mathbf{f} \in \mathcal{O}(\mathbf{g}): g$ is an upper bound of f.
- For sufficiently large values of $n, g(n)$ multiply by a constant is always greater than $f(n)$.
- $\exists \mathbf{c} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow f(n) \leq \mathbf{c} . g(n)$

Review: Asymptotic Notation

Big-Omega

- $\mathbf{f} \in \boldsymbol{\Omega}(\mathbf{g}): g$ is a lower bound of f.
- For sufficiently large values of $n, g(n)$ multiply by a constant is always less than $f(n)$.
- $\exists \mathbf{c} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow f(n) \geq \mathbf{c} . g(n)$

Review: Asymptotic Notation

Big-Omega

- $\mathbf{f} \in \boldsymbol{\Omega}(\mathbf{g}): g$ is a lower bound of f.
- For sufficiently large values of $n, g(n)$ multiply by a constant is always less than $f(n)$.
- $\exists \mathbf{c} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow f(n) \geq \mathbf{c} . g(n)$

$$
\left(\frac{\mathrm{n}^{2}}{2}-6\right) \in \Omega\left(\mathrm{n}^{2}\right)
$$

Review: Asymptotic Notation

Big-Theta

- $\mathbf{f} \in \boldsymbol{\Theta}(\mathbf{g}): g$ is a tight bound of f.
- For sufficiently large values of $n, g(n)$ is both an upper bound and a lower bound for $f(n)$.
- $\exists \mathbf{c}_{1} \in \mathbb{R}^{+}, \exists \mathbf{c}_{2} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow \mathbf{c}_{1} . g(n) \leq f(n) \leq \mathbf{c}_{2} . g(n)$

Review: Asymptotic Notation

Big-Theta

- $\mathbf{f} \in \boldsymbol{\Theta}(\mathbf{g}): g$ is a tight bound of f.
- For sufficiently large values of $n, g(n)$ is both an upper bound and a lower bound for $f(n)$.
- $\exists \mathrm{c}_{1} \in \mathbb{R}^{+}, \exists \mathrm{c}_{2} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow \mathbf{c}_{1} . g(n) \leq f(n) \leq \mathbf{c}_{2} . g(n)$

$$
\left(n^{2}+2 n+1\right) \in \Theta\left(n^{2}\right)
$$

Chapter 4

Algorithm Analysis and Asymptotic Notation

Example: Asymptotic Notation

Example: Proving Lower Bound

- Let $g(n)=n^{2}, f(n)=\frac{n^{2}+n-4}{3}$.

Prove that $\mathbf{f} \in \Omega(\mathrm{g})$

- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \frac{n^{2}+n-4}{3} \geq c . n^{2}$

Proof Structure

Let $c=\ldots, B=\ldots$. Then $c \in \mathbb{R}^{+}, B \in \mathbb{N}$.
Assume $n \in \mathbb{N}$. \#n is a typical natural number
Assume $n \geq B$. \# antecedent

Then $n \geq B \Longrightarrow \frac{n^{2}+n-4}{3} \geq$ c. $n^{2} . \quad$ \# introduce \Longrightarrow Then $\forall n \in \mathbb{N}, n \geq B \Longrightarrow \frac{n^{2}+n-4}{3} \geq c . n^{2}$. \# introduce \forall
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow \frac{n^{2}+n-4}{3} \geq c . n^{2} . \quad \#$ introduce \exists

Example: Proving Lower Bound

- Let $g(n)=n^{2}, f(n)=\frac{n^{2}+n-4}{3}$. Prove that $\mathbf{f} \in \Omega(\mathrm{g})$
- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq c . g(n)$

Scratch Work

- Find an appropriate value for \mathbf{c} and \mathbf{B}.
- First choose a value for c: $\frac{1}{4}$ seems reasonable.
- Assuming $\mathbf{c}=\frac{1}{4}$, find an appropriate value for \mathbf{B} :

$$
\begin{aligned}
\frac{n^{2}}{4} \leq \frac{n^{2}+n-4}{3} & \Longleftrightarrow 3 n^{2} \leq 4 n^{2}+4 n-16 \quad \text { \# multiply both sides by } 12 \\
& \Longleftrightarrow 0 \leq n^{2}+4 n-16 \quad \text { \# subtract } 3 n^{2} \text { from both sides } \\
& \Longleftrightarrow 2<n \quad \text { \# solving the quadratic inequality }
\end{aligned}
$$

- $\mathbf{B}=3$

Example: Proving Lower Bound

- Let $g(n)=n^{2}, f(n)=\frac{n^{2}+n-4}{3}$.

Prove that $\mathrm{f} \in \boldsymbol{\Omega}(\mathrm{g})$

- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \frac{n^{2}+n-4}{3} \geq c . n^{2}$

Proof Structure

Let $\mathbf{c}=\frac{1}{4}, \mathbf{B}=3$. Then $c \in \mathbb{R}^{+}, B \in \mathbb{N}$.
Assume $n \in \mathbb{N}$. \#n is a typical natural number
Assume $n \geq B$. \# antecedent

$$
\begin{aligned}
& 3 n^{2} \geq 3 n^{2} . \quad \# 3 n^{2}=3 n^{2} \\
& 4 n^{2}+4 n-16 \geq 3 n^{2} . \quad \# n \geq 3, \text { so } n^{2}+4 n-16 \geq 5 \\
& \frac{n^{2}+n-4}{3} \geq \frac{n^{2}}{4} . \quad \# \text { divide both sides by } 12 \\
& \frac{n^{2}+n-4}{3} \geq c \cdot n^{2} . \quad \# \mathbf{c}=\frac{1}{4}
\end{aligned}
$$

Then $n \geq B \Longrightarrow \frac{n^{2}+n-4}{3} \geq$ c. $n^{2} . \quad \#$ introduce \Longrightarrow Then $\forall n \in \mathbb{N}, n \geq B \Longrightarrow \frac{n^{2}+n-4}{3} \geq c . n^{2}$. \# introduce \forall Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow \frac{n^{2}+n-4}{3} \geq c . n^{2} . \quad \#$ introduce \exists

Chapter 4

Algorithm Analysis and Asymptotic Notation

Limits and Asymptotic Notation

Limits and Asymptotic Notation

- Suppose $\mathbf{f} \in \mathcal{O}(\mathbf{g})$.

Then $\mathbf{f}(\mathbf{n}) \leq \mathbf{c} . \mathrm{g}(\mathbf{n}), c \in \mathbb{R}^{\geq 0}, n$ is sufficiently large.

- Then $\frac{\mathrm{f}(\mathrm{n})}{\mathrm{g}(\mathrm{n})} \leq \mathbf{c}$ (assuming that $g(n) \neq 0$) for sufficiently large values of n.
- $\lim _{\mathbf{n} \rightarrow \infty} \frac{\mathrm{f}(\mathbf{n})}{\mathrm{g}(\mathbf{n})} \leq \mathbf{c}$.

We should be able to use Limits in proving/disproving function bounds!!

Limits and Asymptotic Notation

Reminder: Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$
- $\forall n \in \mathbb{N}, n \geq n_{1} \Rightarrow\left|\frac{f(n)}{g(n)}-L\right|<\varepsilon_{1}$.
- $\forall n \in \mathbb{N}, n \geq n_{2} \Rightarrow\left|\frac{f(n)}{g(n)}-L\right|<\varepsilon_{2}$.
- $\forall \varepsilon \in \mathbb{R}^{+}, \exists \mathbf{n}^{\prime} \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}^{\prime} \Rightarrow\left|\frac{\mathbf{f}(\mathbf{n})}{\mathrm{g}(\mathbf{n})}-\mathbf{L}\right|<\varepsilon$.

Limits and Asymptotic Notation

- $\forall \varepsilon \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Rightarrow\left|\frac{f(n)}{g(n)}-L\right|<\varepsilon$. is equivalent to

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \mathbf{n}^{\prime} \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}^{\prime} \Rightarrow-\varepsilon<\frac{\mathbf{f}(\mathbf{n})}{\mathbf{g}(\mathbf{n})}-\mathbf{L}<\varepsilon
$$

is equivalent to

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Rightarrow L-\varepsilon<\frac{f(n)}{g(n)}<L+\varepsilon
$$

Reminder: Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \mathbf{n}^{\prime} \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}^{\prime} \Rightarrow \mathbf{L}-\varepsilon<\frac{\mathbf{f}(\mathbf{n})}{\mathrm{g}(\mathbf{n})}<\mathbf{L}+\varepsilon
$$

Proving Upper Bound using Limits

Reminder: Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$
$\forall \varepsilon \in \mathbb{R}^{+}, \exists \mathbf{n}^{\prime} \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}^{\prime} \Rightarrow \mathbf{L}-\varepsilon<\frac{\mathbf{f}(\mathbf{n})}{\mathbf{g}(\mathbf{n})}<\mathbf{L}+\varepsilon$

Assume $\lim _{n \rightarrow \infty} f(n) / g(n)=L$.
Then $\exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow L-1<\frac{f(n)}{g(n)}<L+1 . \quad \#$ definition of limit for $\varepsilon=1$
Then $\exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow f(n) \leq(L+1) g(n)$.
Then $f \in \mathcal{O}(g) . \quad \#$ definition of \mathcal{O}, with $B=n^{\prime}$ and $c=L+1$
Hence, $\lim _{n \rightarrow \infty} f(n) / g(n)=L \Longrightarrow f \in \mathcal{O}(g)$.

Disproving Upper Bound using Limits

Disproving Upper Bound

- Let $f(n)=2^{n}$ and $g(n)=n$. Show that $f \notin \mathcal{O}(g)$.
- Prove the negation of the following

$$
\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq c . g(n)
$$

- Prove

$$
\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge f(n)>c . g(n)
$$

- Note: $\lim _{n \rightarrow \infty} \frac{2^{n}}{n}=\infty$.

Disproving Upper Bound using Limits

Reminder: Special Case of Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
$\forall \varepsilon \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow \frac{f(n)}{g(n)}>\varepsilon$
- $\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge 2^{n}>c . n$

Assume $c \in \mathbb{R}^{+}$, assume $B \in \mathbb{N}$. \# arbitrary values
Then $\exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow 2^{n} / n>c$. \# definition of $\lim _{n \rightarrow \infty} 2^{n} / n=\infty$ with $\varepsilon=c$
Let n_{1} be such that $\forall n \in \mathbb{N}, n \geq n_{1} \Longrightarrow 2^{n} / n>c$. \# instantiate n^{\prime}
Let $n_{0}=\max \left(B, n_{1}\right)$. Then $n_{0} \in \mathbb{N}$.
Then $n_{0} \geq B$. \# by definition of max
Then $2^{n_{0}}>c n_{0}$. \# by the assumption above $2^{n_{0}} / n_{0}>c$, since $n_{0} \geq n_{1}$
Then $n_{0} \geq B \wedge 2^{n_{0}} \geq$ c. n_{0}. \# introduce \wedge
Then $\exists n \in \mathbb{N}, n \geq B \wedge 2^{n} \geq c . n \quad$ \# introduce \exists
Then $\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge 2^{n}>c . n \quad \#$ introduce \forall

Take Home Problem

Use Limits in proving/disproving lower bound

