Algorithm Analysis and Asymptotic Notation

Bahar Aameri

Department of Computer Science University of Toronto

Feb 27, 2015

Mathematical Expression and Reasoning

イロト 不同 トイヨト イヨト ヨー うらつ

Announcements

- Assignment 2 is due next Friday Mar 06, before midnight.
- TA office Hours for Assignment 2:
 - Tuesday, Mar 03, 4-6pm in **BA3201**
 - Thursday, Mar 05, 10am-noon, 4-8pm in BA3201
- Term Test 2:
 - Section L0101: Tuesday Mar 10, 2:10-3:30 Location: EX100
 - Section L0201: Thursday Mar 12, 2:10-3:30 Location: EX100
 - You **must** write the test in the section that you are enrolled in, unless you have talked to the instructors and they allowed you to switch.
 - Content: Chapter 3. Review lecture and course notes!

イロト 不同 トイヨト イヨト ヨー うらつ

- Review: Asymptotic Notation
- Example: Asymptotic Notation
- Limits and Asymptotic Notation

Chapter 4

Algorithm Analysis and Asymptotic Notation

Review: Asymptotic Notation

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Mathematical Expression and Reasoning

Big-Oh

- $\mathbf{f} \in \mathcal{O}(\mathbf{g})$: g is an **upper bound** of f.
 - For sufficiently large values of n, g(n) multiply by a constant is always greater than f(n).
- $\exists \mathbf{c} \in \mathbb{R}^+, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge \mathbf{B} \Rightarrow f(n) \le \mathbf{c}.g(n)$

イロト イロト イヨト イヨト 三日

Big-Oh

- $\mathbf{f} \in \mathcal{O}(\mathbf{g})$: g is an **upper bound** of f.
 - For sufficiently large values of n, g(n) multiply by a constant is always greater than f(n).

• $\exists \mathbf{c} \in \mathbb{R}^+, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge \mathbf{B} \Rightarrow f(n) \le \mathbf{c}.g(n)$

Big-Omega

- $\mathbf{f} \in \mathbf{\Omega}(\mathbf{g})$: g is a lower bound of f.
 - For sufficiently large values of n, g(n) multiply by a constant is always less than f(n).
- $\exists \mathbf{c} \in \mathbb{R}^+, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge \mathbf{B} \Rightarrow f(n) \ge \mathbf{c}.g(n)$

イロト イロト イヨト イヨト 三日

Big-Omega

- $\mathbf{f} \in \mathbf{\Omega}(\mathbf{g})$: g is a lower bound of f.
 - For sufficiently large values of n, g(n) multiply by a constant is always less than f(n).

•
$$\exists \mathbf{c} \in \mathbb{R}^+, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge \mathbf{B} \Rightarrow f(n) \ge \mathbf{c}.g(n)$$

Big-Theta

- $\mathbf{f} \in \Theta(\mathbf{g})$: g is a **tight bound** of f.
 - For sufficiently large values of n, g(n) is both an **upper bound** and a **lower bound** for f(n).

• $\exists \mathbf{c_1} \in \mathbb{R}^+, \exists \mathbf{c_2} \in \mathbb{R}^+, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow \mathbf{c_1}.g(n) \leq f(n) \leq \mathbf{c_2}.g(n)$

Big-Theta

- $f \in \Theta(g)$: g is a **tight bound** of f.
 - For sufficiently large values of n, g(n) is both an upper bound and a lower bound for f(n).

•
$$\exists \mathbf{c_1} \in \mathbb{R}^+, \exists \mathbf{c_2} \in \mathbb{R}^+, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow \mathbf{c_1}.g(n) \leq f(n) \leq \mathbf{c_2}.g(n)$$

Chapter 4

Algorithm Analysis and Asymptotic Notation

Example: Asymptotic Notation

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへの

Mathematical Expression and Reasoning

Example: Proving Lower Bound

• Let
$$g(n) = n^2$$
, $f(n) = \frac{n^2 + n - 4}{3}$
Prove that $\mathbf{f} \in \mathbf{\Omega}(\mathbf{g})$

•
$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow \frac{n^2 + n - 4}{3} \ge c.n^2$$

Proof Structure

Let c = ..., B = ... Then $c \in \mathbb{R}^+, B \in \mathbb{N}$. Assume $n \in \mathbb{N}$. # n is a typical natural number Assume $n \ge B$. # antecedent

Then $n \ge B \implies \frac{n^2+n-4}{3} \ge c.n^2$. # introduce \implies Then $\forall n \in \mathbb{N}, n \ge B \implies \frac{n^2+n-4}{3} \ge c.n^2$. # introduce \forall Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \implies \frac{n^2+n-4}{3} \ge c.n^2$. # introduce \exists

Example: Proving Lower Bound

• Let
$$g(n) = n^2$$
, $f(n) = \frac{n^2 + n - 4}{3}$.
Prove that $\mathbf{f} \in \mathbf{\Omega}(\mathbf{g})$

• $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow f(n) \ge c.g(n)$

Scratch Work

- Find an appropriate value for **c** and **B**.
- First choose a value for c: $\frac{1}{4}$ seems reasonable.

• Assuming $\mathbf{c} = \frac{1}{4}$, find an appropriate value for **B**: $\frac{n^2}{4} \leq \frac{n^2 + n - 4}{3} \iff 3n^2 \leq 4n^2 + 4n - 16 \quad \# \text{ multiply both sides by 12}$ $\iff 0 \leq n^2 + 4n - 16 \quad \# \text{ subtract } 3n^2 \text{ from both sides}$ $\iff 2 < n \qquad \# \text{ solving the quadratic inequality}$ • **B** = **3**

Example: Proving Lower Bound

• Let
$$g(n) = n^2$$
, $f(n) = \frac{n^2 + n - 4}{3}$.
Prove that $\mathbf{f} \in \mathbf{\Omega}(\mathbf{g})$

•
$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow \frac{n^2 + n - 4}{3} \ge c.n^2$$

Proof Structure

Let $\mathbf{c} = \frac{1}{4}$, $\mathbf{B} = \mathbf{3}$. Then $c \in \mathbb{R}^+$, $B \in \mathbb{N}$. Assume $n \in \mathbb{N}$. # n is a typical natural number Assume $n \geq B$. # antecedent $3n^2 \geq 3n^2$. # $3n^2 = 3n^2$ $4n^2 + 4n - 16 \geq 3n^2$. # $n \geq 3$, so $n^2 + 4n - 16 \geq 5$ $\frac{n^2 + n - 4}{3} \geq \frac{n^2}{4}$. # divide both sides by 12 $\frac{n^2 + n - 4}{3} \geq c.n^2$. # $\mathbf{c} = \frac{1}{4}$ Then $n \geq B \implies \frac{n^2 + n - 4}{3} \geq c.n^2$. # introduce \Rightarrow Then $\forall n \in \mathbb{N}, n \geq B \implies \frac{n^2 + n - 4}{3} \geq c.n^2$. # introduce \forall Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \implies \frac{n^2 + n - 4}{3} \geq c.n^2$. # introduce \exists Chapter 4

Algorithm Analysis and Asymptotic Notation

Limits and Asymptotic Notation

・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ うへつ

Mathematical Expression and Reasoning

Limits and Asymptotic Notation

- Suppose $\mathbf{f} \in \mathcal{O}(\mathbf{g})$. Then $\mathbf{f}(\mathbf{n}) \leq \mathbf{c}.\mathbf{g}(\mathbf{n}), c \in \mathbb{R}^{\geq 0}, n$ is sufficiently large.
- Then $\frac{\mathbf{f}(\mathbf{n})}{\mathbf{g}(\mathbf{n})} \leq \mathbf{c}$ (assuming that $g(n) \neq 0$) for sufficiently large values of n.
- $\lim_{n\to\infty} \frac{\mathbf{f}(n)}{\mathbf{g}(n)} \leq \mathbf{c}.$

We should be able to use Limits in proving/disproving function bounds!!

Limits and Asymptotic Notation

Reminder: Limits

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = I$$

•
$$\forall n \in \mathbb{N}, n \ge n_1 \Rightarrow \left| \frac{f(n)}{g(n)} - L \right| < \varepsilon_1.$$

•
$$\forall n \in \mathbb{N}, n \ge n_2 \Rightarrow |\frac{f(n)}{g(n)} - L| < \varepsilon_2.$$

• $\forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \Rightarrow \mid \frac{f(n)}{g(n)} - L \mid < \varepsilon.$

Limits and Asymptotic Notation

•
$$\forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \Rightarrow \mid \frac{f(n)}{g(n)} - L \mid < \varepsilon.$$

is equivalent to

$$\forall \varepsilon \in \mathbb{R}^+, \exists \mathbf{n}' \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}' \Rightarrow -\varepsilon < \frac{\mathbf{f}(\mathbf{n})}{\mathbf{g}(\mathbf{n})} - \mathbf{L} < \varepsilon.$$

is equivalent to

$$\forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \Rightarrow L - \varepsilon < \frac{f(n)}{g(n)} < L + \varepsilon.$$

Reminder: Limits

•
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = L$$

 \Leftrightarrow
 $\forall \varepsilon \in \mathbb{R}^+, \exists \mathbf{n}' \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \ge \mathbf{n}' \Rightarrow \mathbf{L} - \varepsilon < \frac{\mathbf{f}(\mathbf{n})}{g(\mathbf{n})} < \mathbf{L} + \varepsilon$

Proving Upper Bound using Limits

Reminder: Limits

•
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = L$$

 \Leftrightarrow
 $\forall \varepsilon \in \mathbb{R}^+, \exists \mathbf{n}' \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \ge \mathbf{n}' \Rightarrow \mathbf{L} - \varepsilon < \frac{\mathbf{f}(\mathbf{n})}{\mathbf{g}(\mathbf{n})} < \mathbf{L} + \varepsilon$

Assume $\lim_{n\to\infty} f(n)/g(n) = L$. Then $\exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \implies L-1 < \frac{f(n)}{g(n)} < L+1$. # definition of limit for $\varepsilon = 1$ Then $\exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \implies f(n) \le (L+1)g(n)$. Then $f \in \mathcal{O}(g)$. # definition of \mathcal{O} , with B = n' and c = L+1Hence, $\lim_{n\to\infty} f(n)/g(n) = L \implies f \in \mathcal{O}(g)$.

イロト 不同 トイヨト イヨト ヨー うらつ

Disproving Upper Bound using Limits

Disproving Upper Bound

- Let $f(n) = 2^n$ and g(n) = n. Show that $f \notin \mathcal{O}(g)$.
- Prove the **negation** of the following

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge B \Rightarrow f(n) \le c.g(n)$$

• Prove

 $\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge B \land f(n) > c.g(n)$

• Note:
$$\lim_{n\to\infty} \frac{2^n}{n} = \infty$$
.

Disproving Upper Bound using Limits

Reminder: Special Case of Limits

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

 \Leftrightarrow
 $\forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \implies \frac{f(n)}{g(n)} > \varepsilon$

• $\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge B \land 2^n > c.n$

Assume $c \in \mathbb{R}^+$, assume $B \in \mathbb{N}$. # arbitrary values Then $\exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \implies 2^n/n > c$. # definition of $\lim_{n \to \infty} 2^n/n = \infty$ with $\varepsilon = c$ Let n_1 be such that $\forall n \in \mathbb{N}, n \ge n_1 \implies 2^n/n > c$. # instantiate n'Let $n_0 = \max(B, n_1)$. Then $n_0 \in \mathbb{N}$. Then $n_0 \ge B$. # by definition of max Then $2^{n_0} > cn_0$. # by the assumption above $2^{n_0}/n_0 > c$, since $n_0 \ge n_1$ Then $n_0 \ge B \land 2^{n_0} \ge c.n_0$. # introduce \land Then $\exists n \in \mathbb{N}, n \ge B \land 2^n \ge c.n$ # introduce \exists Then $\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge B \land 2^n > c.n$ # introduce \forall

Use Limits in proving/disproving lower bound