Chapter 3
 Formal Proofs

Bahar Aameri
Department of Computer Science
University of Toronto

Feb 13, 2015

Announcements

- Assignment 2 is posted.
- Due date: Mar 06, before midnight on MarkUs.
- Assignments may be submitted in groups of up to two students. You may choose your group-mate from students in the other section.
- Submissions must be typed.
- The size of the PDF file must be less than 1MB.
- Mid-term Course Evaluation: link posted on the course website.
- Please fill out to let us know your comments/suggestions.
- It is a Google form, but you don't have to be logged-in.
- It is completely anonymous.
- Takes less than 5 minutes.
- Assignment 1 will be return during the weekend.
- Remark requests through MarkUs by Wednesday, Feb 25.
- Exercise: Formal Proofs

Formal Proofs

Exercises

Use the proof structures in this course to prove or disprove the following claims
(1) Consider the definition of the floor function:

$$
\mathbf{D}_{\mathbf{1}}: \forall x \in \mathbb{R}, \forall y \in \mathbb{Z},(y=\lfloor x\rfloor) \Leftrightarrow(y \leq x) \wedge(\forall z \in \mathbb{Z},(z \leq x) \Rightarrow(z \leq y))
$$

Use $\mathbf{D}_{\mathbf{1}}$ to prove $\forall x \in \mathbb{R},(\lfloor x\rfloor>x-1)$
(2) Use proof by contradiction to prove that $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor$
(3) For $x \in \mathbb{R}$,

$$
|x|= \begin{cases}-x, & x<0 \\ x, & x \geq 0\end{cases}
$$

Prove $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},|x||y|=|x y|$.

