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Today’s Topics

Review: Proof Structures for Quantifiers,
Implications and Conjunctions

Proof Structure for Disjunction

Proof by Cases
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Proof of Multiple Quantifiers

Structure

Prove ∀x ∈ D,∃y ∈ E,P (x, y)

Assume x ∈ D. # x is a typical element of D
Let y = . # choose a particular element of the domain
Then y ∈ E. # this may be obvious, otherwise prove it

... # prove P (x, y)
Then P (x, y).
Then ∃y ∈ E,P (x, y). # introduce existential

Then ∀x ∈ D,∃y ∈ E,P (x, y). # introduce universal
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Proof of Multiple Quantifiers

Structure

Prove ∃x ∈ D,∀y ∈ E,P (x, y)

Let x = . # choose a particular element of the domain
Then x ∈ D. # this may be obvious, otherwise prove it
Assume y ∈ E. # y is a typical element of E

... # prove P (x, y)
Then P (x, y).

Then ∀x ∈ D,P (x, y). # introduce universal
Then ∃y ∈ E,∀x ∈ D,P (x, y). # introduce existential
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Proof of Conjunction

Structure

Prove ∀x ∈ D,P (x) ∧Q(x)

Assume x ∈ D. # x is a typical element of D
... # prove P (x)

Then P (x).
... # prove Q(x)

Then Q(x).
Then P (x) ∧Q(x). # introduce conjunction

Then ∀x ∈ D,P (x) ∧Q(x). # introduce universal
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Proof of Disjunction

Structure

Prove ∀x ∈ D,P (x) ∨Q(x)

Assume x ∈ D. # x is a typical element of D
... # prove P (x)

Then P (x).
Then P (x) ∨Q(x). # introduce disjunction

Then ∀x ∈ D,P (x) ∨Q(x). # introduce universal

Assume x ∈ D. # x is a typical element of D
... # prove Q(x)

Then Q(x).
Then P (x) ∨Q(x). # introduce disjunction

Then ∀x ∈ D,P (x) ∨Q(x). # introduce universal
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Proof by Cases

Implications with Disjunctive Antecedents

Consider an implication which has a disjunction as the
antecedent:

S1 : (A1 ∨A2) ⇒ C.

How can we prove S1?
(A1 ∨A2) ⇒ C is equivalent with (A1 ⇒ C) ∧ (A2 ⇒ C).

General Structure

Assume A1 ∨A2.
Case 1: Assume A1.

.

.. # prove C
Then C.

Then A1 ⇒ C. # assuming A1 leads to C
Case 2: Assume A2.

... # prove C
Then C.

Then A2 ⇒ C. # assuming A2 leads to C
Then (A1 ⇒ C) ∧ (A2 ⇒ C). # introduce conjunction
Then (A1 ∨A2) ⇒ C. # logically equiv. the previous statement
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Proof by Cases

General Case

S2 : (A1 ∨ ... ∨An) ⇒ C.

S2 is equivalent with
(A1 ⇒ C) ∧ ... ∧ (An ⇒ C).

General Structure

Assume A1 ∨ ... ∨An.
Case 1: Assume A1.

... # prove C
Then C.

Then A1 ⇒ C. # assuming A1 leads to C
...

Case n: Assume An.
.
.. # prove C

Then C.
Then An ⇒ C. # assuming An leads to C
Then (A1 ⇒ C) ∧ ... ∧ (An ⇒ C). # introduce conjunction
Then (A1 ∨ ... ∨An) ⇒ C. # logically equiv. the previous statement
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Proof by Cases

General Case

Assumption: (A1 ∨ ... ∨An).

Claim: C.

General Structure

Assume A1 ∨ ... ∨An.
Case 1: Assume A1.

... # prove C
Then C.

...
Case n: Assume An.

... # prove C
Then C.

Then C. # assuming A1 ∨ ... ∨An leads to C
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Proof by Cases

Exercise

Prove that if n is an integer number, then n2 + n is even.

Solution

Step 1: Translate the claim to logical notation.
For all integers n, n2 + n is even.
∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Step 2: Find a plan for the proof :
Consider two cases: n is odd or n is even.

Step 3: Translate the assumptions/facts to logical notation
∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Step 4: Choose an appropriate proof structure. Use the
assumptions/facts to prove the claim.
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
...

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
...

Then ∃k ∈ Z, n2 + n = 2k.
Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z

...
Then ∃k ∈ Z, n2 + n = 2k.

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

.

.

.
Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential

.

.

.
.
.
.

Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases
Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential
Then n2 + n = n(n + 1) = (2k0 + 1)(2k0 + 2) = 2(2k0 + 1)(k0 + 1). #
some algebra

.

.

.
.
.
.

Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases
Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential
Then n2 + n = n(n + 1) = (2k0 + 1)(2k0 + 2) = 2(2k0 + 1)(k0 + 1). #
some algebra
Then ∃k ∈ Z, n2 + n = 2k. # k = (2k0 + 1)(k0 + 1) ∈ Z

.

.

.
Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential
Then n2 + n = n(n + 1) = (2k0 + 1)(2k0 + 2) = 2(2k0 + 1)(k0 + 1). #
some algebra
Then ∃k ∈ Z, n2 + n = 2k. # k = (2k0 + 1)(k0 + 1) ∈ Z

Case 2: Assume ∃k ∈ Z, n = 2k.

.

.

.
Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential
Then n2 + n = n(n + 1) = (2k0 + 1)(2k0 + 2) = 2(2k0 + 1)(k0 + 1). #
some algebra
Then ∃k ∈ Z, n2 + n = 2k. # k = (2k0 + 1)(k0 + 1) ∈ Z

Case 2: Assume ∃k ∈ Z, n = 2k.
Let k0 ∈ Z be such that n = 2k0. # instantiate existential

.

.

.
Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential
Then n2 + n = n(n + 1) = (2k0 + 1)(2k0 + 2) = 2(2k0 + 1)(k0 + 1). #
some algebra
Then ∃k ∈ Z, n2 + n = 2k. # k = (2k0 + 1)(k0 + 1) ∈ Z

Case 2: Assume ∃k ∈ Z, n = 2k.
Let k0 ∈ Z be such that n = 2k0. # instantiate existential
Then n2 + n = n(n + 1) = 2k0(2k0 + 1) = 2[k0(2k0 + 1)].

.

.

.
Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases

Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Assumption: ∀n ∈ Z, (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k).

Claim: ∀n ∈ Z, ∃k ∈ Z, n2 + n = 2k.

Solution

Assume n ∈ Z. # n is a typical integer number
Then (∃k ∈ Z, n = 2k + 1) ∨ (∃k ∈ Z, n = 2k). # by Assumption, n ∈ Z
Case 1: Assume ∃k ∈ Z, n = 2k + 1.

Let k0 ∈ Z be such that n = 2k0 + 1. # instantiate existential
Then n2 + n = n(n + 1) = (2k0 + 1)(2k0 + 2) = 2(2k0 + 1)(k0 + 1). #
some algebra
Then ∃k ∈ Z, n2 + n = 2k. # k = (2k0 + 1)(k0 + 1) ∈ Z

Case 2: Assume ∃k ∈ Z, n = 2k.
Let k0 ∈ Z be such that n = 2k0. # instantiate existential
Then n2 + n = n(n + 1) = 2k0(2k0 + 1) = 2[k0(2k0 + 1)].
Then ∃k ∈ Z, n2 + n = 2k. # k = k0(2k0 + 1) ∈ Z

Then ∃k ∈ Z, n2 + n = 2k. # true in all (both) possible cases
Then ∀n ∈ Z, ∃k ∈, n2 + n = 2k. # introduction of universal
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Proof by Cases

Exercise

Prove that the square of a natural is a multiple of 3 or a multiple of 3
plus 1.

Solution

Step 1: Translate the claim to logical notation.
∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1).

Step 2: Find a plan for the proof :
Consider three cases: n = 3k or n = 3k + 1 or n = 3k + 2.

Step 3: Translate the assumptions/facts to logical notation
∀n ∈ N, (∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2).

Step 4: Choose an appropriate proof structure. Use the
assumptions/facts to prove the claim.
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Proof by Cases

Structure

Disjunction in the assumptions → proof by cases

Disjunction in the claim → proof structure for disjunction

Assumption: P ∨Q.

Claim: S ∨R.

Assume P ∨Q
Case 1: Assume P .

... # prove R
Then R.

Case 2: Assume Q.
... # prove S

Then S.
Thus R ∨ S. # introduce disjunction
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Proof by Cases

Structure

Disjunction in the assumptions → proof by cases

Disjunction in the claim → proof structure for disjunction

Assumption: P ∨Q.

Claim: S ∨R.

Assume P ∨Q
Case 1: Assume P .

... # prove R
Then R.
Then R ∨ S. # introduce disjunction

Case 2: Assume Q.
... # prove S

Then S.
Then R ∨ S. # introduce disjunction

Thus R ∨ S. # introduce disjunction
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