Chapter 3 Formal Proofs

Bahar Aameri

Department of Computer Science University of Toronto

Feb 04, 2015

Mathematical Expression and Reasoning

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

• Review: Proof Structures for Quantifiers, Implications and Conjunctions

- Proof Structure for Disjunction
- Proof by Cases

Chapter 3 Formal Proofs

Review: Proof Structures for Quantifiers, Implications and Conjunctions

- * ロ * * 母 * * き * き * の < ?

Mathematical Expression and Reasoning

Proof of Multiple Quantifiers

Structure

• Prove $\forall x \in D, \exists y \in E, P(x, y)$

Assume $x \in D$. # x is a typical element of D Let $y = _$. # choose a particular element of the domain Then $y \in E$. # this may be obvious, otherwise prove it \vdots # prove P(x, y)Then P(x, y). Then $\exists y \in E, P(x, y)$. # introduce existential Then $\forall x \in D, \exists y \in E, P(x, y)$. # introduce universal

Proof of Multiple Quantifiers

Structure

• Prove $\exists x \in D, \forall y \in E, P(x, y)$

Let $x = \underline{\qquad}$. # choose a particular element of the domain Then $x \in D$. # this may be obvious, otherwise prove it Assume $y \in E$. # y is a typical element of E

: # prove P(x, y)Then P(x, y). Then $\forall x \in D, P(x, y)$. # introduce universal Then $\exists y \in E, \forall x \in D, P(x, y)$. # introduce existential

Structure

• Prove $\forall x \in D, P(x) \land Q(x)$

```
Assume x \in D. # x is a typical element of D

: # prove P(x)

Then P(x).

: # prove Q(x)

Then Q(x).

Then P(x) \land Q(x). # introduce conjunction

Then \forall x \in D, P(x) \land Q(x). # introduce universal
```

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Chapter 3 Formal Proofs

Proof Structure for Disjunction

Mathematical Expression and Reasoning

Proof of Disjunction

Structure

- Prove $\forall x \in D, P(x) \lor Q(x)$
- Assume $x \in D$. # x is a typical element of D

 $\begin{array}{c} \vdots \quad \# \text{ prove } P(x) \\ \text{Then } P(x). \\ \text{Then } P(x) \lor Q(x). \quad \# \text{ introduce disjunction} \\ \text{Then } \forall x \in D, P(x) \lor Q(x). \quad \# \text{ introduce universal} \\ \bullet \quad \text{Assume } x \in D. \quad \# x \text{ is a typical element of } D \\ \vdots \quad \# \text{ prove } Q(x) \\ \text{Then } Q(x). \\ \text{Then } P(x) \lor Q(x). \quad \# \text{ introduce disjunction} \\ \text{Then } \forall x \in D, P(x) \lor Q(x). \quad \# \text{ introduce universal} \end{array}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Chapter 3 Formal Proofs

Proof by Cases

Mathematical Expression and Reasoning

Implications with Disjunctive Antecedents

- Consider an **implication** which has a **disjunction** as the **antecedent**:
 - $\mathbf{S_1}: (A_1 \lor A_2) \Rightarrow C.$
- How can we prove S_1 ?
 - $(A_1 \lor A_2) \Rightarrow C$ is equivalent with $(A_1 \Rightarrow C) \land (A_2 \Rightarrow C)$.

General Structure

```
Assume A_1 \lor A_2.

Case 1: Assume A_1.

\vdots # prove C

Then C.

Then A_1 \Rightarrow C. # assuming A_1 leads to C

Case 2: Assume A_2.

\vdots # prove C

Then C.

Then A_2 \Rightarrow C. # assuming A_2 leads to C

Then (A_1 \Rightarrow C) \land (A_2 \Rightarrow C). # introduce conjunction

Then (A_1 \lor A_2) \Rightarrow C. # logically equiv. the previous statement
```

General Case

- $\mathbf{S_2}: (A_1 \lor \ldots \lor A_n) \Rightarrow C.$
- S_2 is equivalent with $(A_1 \Rightarrow C) \land \dots \land (A_n \Rightarrow C).$

General Structure

```
Assume A_1 \vee ... \vee A_n.

Case 1: Assume A_1.

\vdots # prove C

Then C.

Then A_1 \Rightarrow C. # assuming A_1 leads to C

\vdots

Case n: Assume A_n.

\vdots # prove C

Then C.

Then A_n \Rightarrow C. # assuming A_n leads to C

Then (A_1 \Rightarrow C) \wedge ... \wedge (A_n \Rightarrow C). # introduce conjunction

Then (A_1 \vee ... \vee A_n) \Rightarrow C. # logically equiv. the previous statement
```

General Case

- Assumption: $(A_1 \vee ... \vee A_n)$.
- Claim: C.

General Structure

Assume $A_1 \vee ... \vee A_n$. **Case 1**: Assume A_1 . $\vdots \quad \# \text{ prove } C$ Then C. \vdots **Case n**: Assume A_n . $\vdots \quad \# \text{ prove } C$ Then C. Then C. Then C. $\# \text{ assuming } A_1 \vee ... \vee A_n \text{ leads to } C$

Exercise

• Prove that if n is an integer number, then $n^2 + n$ is even.

Solution

- Step 1: Translate the claim to logical notation.
 - For all integers $n, n^2 + n$ is even. $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k.$
- Step 2: Find a plan for the proof :
 - Consider two cases: n is odd or n is even.
- Step 3: Translate the assumptions/facts to logical notation
 - $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Step 4: Choose an appropriate proof structure. Use the assumptions/facts to prove the claim.

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number : Then $\forall n \in \mathbb{Z}, \exists k \in n^2 + n = 2k$. # introduction of universal

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number

Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. Then $\forall n \in \mathbb{Z}, \exists k \in n^2 + n = 2k$. # introduction of universal

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$:

Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. Then $\forall n \in \mathbb{Z}, \exists k \in n^2 + n = 2k$. # introduction of universal

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$ Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$. Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases Then $\forall n \in \mathbb{Z}, \exists k \in , n^2 + n = 2k$. # introduction of universal

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$ Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$. # instantiate existential Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$. # some algebra Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$: Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases Then $\forall n \in \mathbb{Z}, \exists k \in , n^2 + n = 2k$. # introduction of universal

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$ Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$. # instantiate existential Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$. # some algebra Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$ Case 2: Assume $\exists k \in \mathbb{Z}, n = 2k$. Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases Then $\forall n \in \mathbb{Z}, \exists k \in n^2 + n = 2k$. # introduction of universal

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$ Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$. # instantiate existential Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$. # some algebra Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$ Case 2: Assume $\exists k \in \mathbb{Z}, n = 2k$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0$. # instantiate existential \vdots Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases Then $\forall n \in \mathbb{Z}, \exists k \in n^2 + n = 2k$. # introduction of universal

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$ Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$. # instantiate existential Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$. # some algebra Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$ Case 2: Assume $\exists k \in \mathbb{Z}, n = 2k$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0$. # instantiate existential Then $n^2 + n = n(n + 1) = 2k_0(2k_0 + 1) = 2[k_0(2k_0 + 1)]$ Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases Then $\forall n \in \mathbb{Z}, \exists k \in , n^2 + n = 2k$. # introduction of universal

Exercise

- Assumption: $\forall n \in \mathbb{Z}, (\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k).$
- Claim: $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n^2 + n = 2k$.

Solution

Assume $n \in \mathbb{Z}$. # n is a typical integer number Then $(\exists k \in \mathbb{Z}, n = 2k + 1) \lor (\exists k \in \mathbb{Z}, n = 2k)$. # by Assumption, $n \in \mathbb{Z}$ Case 1: Assume $\exists k \in \mathbb{Z}, n = 2k + 1$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0 + 1$. # instantiate existential Then $n^2 + n = n(n + 1) = (2k_0 + 1)(2k_0 + 2) = 2(2k_0 + 1)(k_0 + 1)$. # some algebra Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = (2k_0 + 1)(k_0 + 1) \in \mathbb{Z}$ Case 2: Assume $\exists k \in \mathbb{Z}, n = 2k$. Let $k_0 \in \mathbb{Z}$ be such that $n = 2k_0$. # instantiate existential Then $n^2 + n = n(n + 1) = 2k_0(2k_0 + 1) = 2[k_0(2k_0 + 1)]$. Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # $k = k_0(2k_0 + 1) \in \mathbb{Z}$ Then $\exists k \in \mathbb{Z}, n^2 + n = 2k$. # true in all (both) possible cases Then $\forall n \in \mathbb{Z}, \exists k \in , n^2 + n = 2k$. # introduction of universal

Exercise

• Prove that the square of a natural is a multiple of 3 or a multiple of 3 plus 1.

Solution

- Step 1: Translate the claim to logical notation.
 ∀n ∈ N, (∃k ∈ N, n² = 3k) ∨ (∃k ∈ N, n² = 3k + 1).
- Step 2: Find a plan for the proof :
 - Consider three cases: n = 3k or n = 3k + 1 or n = 3k + 2.
- Step 3: Translate the assumptions/facts to logical notation
 ∀n ∈ N, (∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2).
- **Step 4:** Choose an appropriate proof structure. Use the assumptions/facts to prove the claim.

Structure

- Disjunction in the **assumptions** \rightarrow proof by cases
- \bullet Disjunction in the ${\bf claim} \to {\rm proof}$ structure for disjunction
- Assumption: $P \lor Q$.
- Claim: $S \vee R$.

```
Assume P \lor Q

Case 1: Assume P.

\vdots \# prove R

Then R.

Case 2: Assume Q.

\vdots \# prove S

Then S.

Thus R \lor S. \# introduce disjunction
```

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Structure

- Disjunction in the assumptions \rightarrow proof by cases
- Disjunction in the **claim** \rightarrow proof structure for disjunction
- Assumption: $P \lor Q$.
- Claim: $S \vee R$.

Assume $P \lor Q$ **Case 1:** Assume P. \vdots # prove RThen R. Then $R \lor S$. # introduce disjunction **Case 2:** Assume Q. \vdots # prove SThen S. Then $R \lor S$. # introduce disjunction Thus $R \lor S$. # introduce disjunction