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Today’s Topics

o Last Lecture: Exercise on Proof by Cases

o Non-Boolean Functions in Logical Statements

o Substituting Known Results

o Inference Rules: Building/Breaking Formulas
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Exercise on Proof by Cases

Mathematical Expr



Proof by Cases

Exercise

o Prove that the square of a natural is a multiple of 3 or a multiple of 3
plus 1.

o Step 1: Translate the claim to logical notation.
e VneN,(Fk € N,n? =3k) v (3k € N,n? = 3k + 1).

o Step 2: Find a plan for the proof:
o Consider three cases: n = 3k or n = 3k + 1 or n = 3k + 2.

o Step 3: Translate the assumptions/facts to logical notation
e VneN,(FkeN,n=3kVn=3k+1Vn=23k+2).

o Step 4: Choose an appropriate proof structure. Use the
assumptions/facts to prove the claim.
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Proof by Cases

Structure

o Disjunction in the assumptions — proof by cases

o Disjunction in the claim — proof structure for disjunction

o Assumption: PV Q.
o Claim: SV R.

Assume PV Q
Case 1: Assume P.

5# prove R
Then R.
Case 2: Assume ().

3# prove S
Then S.
Thus R V S.# introduce disjunction
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Proof by Cases

Solution

Assume n € N. # n is a typical element of N
Then 3k € Nyn =3k Vn =3k + 1V n=3k+ 2. # properties of N

Then (3k € N, n? = 3k) vV (3k € N, n? = 3k + 1). # true in all possible cases
Then Vn € N, (3k € N,n? = 3k) v (3k € N,n? = 3k + 1). # introduction of V
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Proof by Cases

Solution

Assume n € N. # n is a typical element of N
Then 3k € Nyn =3k Vn =3k+ 1V n =3k+ 2. # properties of N
Let ko € N be such that n = 3kg Vn = 3ko + 1V n = 3ko + 2.# instantiate 3

Then (3k € N,n? = 3k) V (3k € N,n? = 3k + 1). # true in all possible cases
Then Vn € N, (3k € N,n? = 3k) v (3k € N,n? = 3k + 1). # introduction of ¥V
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Proof by Cases

Solution

Assume n € N. # n is a typical element of N
Then 3k € Nyn =3kVn=3k+1Vn=3k+ 2. # properties of N
Let ko € N be such that n = 3kg Vn = 3ko + 1V n = 3ko + 2.# instantiate 3
Case 1: Assume n = 3ko.
Then n? = 9kZ = 3(3k2). # algebra
Then 3k € N,n? = 3k. # k =3k5,k €N

Then (3k € N, n? =3k) v (3k €N, n

= true in all possible cases
Then Vn € N, (3k € N,n? =3k) vV (3k € N,n? =3k + 1

. ## introduction of V
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Proof by Cases

Assume n € N. # n is a typical element of N

Then 3k € Nyn =3kVn =3k+ 1V n=3k+ 2. # properties of N

Let ko € N be such that n = 3ko Vn = 3ko + 1V n = 3ko + 2. # instantiate 3
Case 1: Assume n = 3k

0-
Then n? = 9kZ = 3(3k3). # algebra
Then 3k € N,n? =3k. # k=3k2, k€N
Case 2: Assume n = 3kg + 1. )
Then n? = 9k2 + 6k + 1 = 3(3kZ + 2ko) + 1. # algebra
Then 3k € N,n? =3k + 1. # k = 3kJ + 2ko, k €N

Then (3k €N, n? = 3k) V (3k €N, . # true in all possible cases
Then Vn € N, (3k € N,n? = 3k) Vv (3k € 1). # introduction of V
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Proof by Cases

Solution

Assume n € N. # n is a typical element of N
Then 3k € Nyn =3kVn=3k+1Vn=3k+ 2. # properties of N
Let ko € N be such that n = 3kg Vn = 3ko + 1V n = 3ko + 2.# instantiate 3
Case 1: Assume n = 3ko.
Then n? = 9k3 = 3(3k3). # algebra
Then 3k € N,n? = 3k. # k=3k2,k €N

Case 2: Assume n = 3ko + 1.
Then n? = 9kg + 6k + 1 = 3(3k] + 2ko) + 1. # algebra
Then 3k € N,n? =3k + 1. # k = 3k + 2ko, k €N

Case 3: Assume n = 3ko + 2.
Then n? = 9k3 + 12k + 4 = 3(3k3 + 4ko + 1) + 1. # algebra
Then 3k € N,n? =3k + 1. # k=3k2 +4ko + 1,k €N

Then (3k € N,n? = 3k) V (3k € N,n? = 3k + 1). # true in all possible cases
Then Vn € N, (3k € N,n? = 3k) V (3k € N, n? = 3k + 1). # introduction of V
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Non-Boolean Functions in Logical Statements
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Non-Boolean Functions in Logical Statements

@ Suppose we want to use properties of a non-boolean function:
|| denotes floor of x:

o |z|:R—Z.
o |z]: the largest integer < z.

o Non-boolean functions cannot take the place of predicates.

o How can we use them?
o Use predicates to make and/or verify claims about non-boolean
functions.

o Vx €R, |x| <x+1.

@ non-boolean functions are not:

o Variables:
Viz] eR,P — incorrect

o Predicates:
Ve €R, |z] V |z + 1] — incorrect
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Non-Boolean Functions in Logical Statements

Exercise

e Prove Vz € R, |z]| <z + 1.

Assume x € R. # x is a typical element of R

Then |[z| < z. # by definition of floor

Then |z] <z + 1. # x < x + 1 and transitivity of <
Then Vz € R, |z] < z + 1. # introduce V
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Substituting Known Results
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Substituting Known Results

o To make proofs shorter and modular, some of the required results
might be proved separately, and then be referred to.

o Existing theorems/lemmas can also be reused.
0 C1 VycRy#0=1/(y*+2) <3.

Theorem 1: Vz e R,z >0=1/(z+2) < 3.
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Substituting Known Results

Exercise

@ Use Theorem 1 to prove Cy
0 C1:VyeR,y#0=1/(y>+2) < 3.
Theorem 1: Vx e R,z >0=1/(z+2) < 3.

Proof:
Assume y € R. # y is a typical element of R

Then Vy €R, y #0=1/(y> +2) < 3.
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Substituting Known Results

@ Use Theorem 1 to prove Cq
0 Ci Wy eR,y#0=1/(y*+2) < 3.
Theorem 1: Vx € R, 2z > 0= 1/(x +2) < 3.

Proof:

Assume y € R. # y is a typical element of R
Assume y # 0. # antecedent
Then 3°> #0. # y#0
Then 4 € R and y? > 0. # R closed under X, squares are > 0
Then 3> > 0. # 3* > 0 and 3> # 0.
Then 1/(y* +2) < 3. # by Theorem 1
Then y # 0 = 1/(y* +2) < 3. # introduction of =
Then Vy € R,y # 0 = 1/(y* + 2) < 3. # introduction of V

Mathematical Expression and Reasoning



Chapter 3

Formal Proofs

Inference Rules: Building/Breaking Formulas
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Inference Rules: Building/Breaking Formulas

o Most of the times, claims are not just predicates.

@ We need to be able to reduce claims to simpler statement, or
combine simpler statements to build more complex ones.

o Inference Rules:

o Introduction Rules: rules that allow making up more complex logical
sentences from simpler ones.

o Elimination Rules: rules that allow reducing a logical sentence to
simpler sentences.




Inference Rules: Building/Breaking Formulas

Introduction Rules

o For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[=1] implication introduction: [VI] universal introduction:
(direct) (indirect)
Assume a € D
Assume A Assume -B :
: : P(a)
B -A Vz € D, P(z)
A= B A= 1B
[<1]] bi-implication introduction: [31] existential introduction:
A=DB P(a)
B= A a€D
A< B Jz € D, P(x)
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Inference Rules: Building/Breaking Formulas

Introduction Rules

o For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[—I] negation introduction:
[VI] disjunction introduction:

Assume A
A
: o AV B AV A
Zontradlctlon BV A

[AI] conjunction introduction:
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Inference Rules: Building/Breaking Formulas

Elimination Rules

o For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[=E] implication elimination: [VE] universal elimination:
(Modus (Modus
Ponens) Tollens) Vx € D, P(z)
A=B A=B a€D
A -B P(a)
B -A

[<E] bi-implication elimination: [3E] existential elimination:
A& B 3z € D, P(x)
A= B Let a € D such that P(a)
B= A :
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Inference Rules: Building/Breaking Formulas

Elimination Rules

o For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[-E] negation elimination:
[VE] disjunction elimination:

A A
contradiction -A -B

B A

[AE] conjunction elimination:

ANB
A
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