Bahar Aameri

Department of Computer Science University of Toronto

Feb 06, 2015

Mathematical Expression and Reasoning

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

- Last Lecture: Exercise on Proof by Cases
- Non-Boolean Functions in Logical Statements
- Substituting Known Results
- Inference Rules: Building/Breaking Formulas

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Exercise on Proof by Cases

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mathematical Expression and Reasoning

Exercise

• Prove that the square of a natural is a multiple of 3 or a multiple of 3 plus 1.

Solution

• Step 1: Translate the claim to logical notation.

• $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1).$

• Step 2: Find a plan for the proof:

• Consider three cases: n = 3k or n = 3k + 1 or n = 3k + 2.

• Step 3: Translate the assumptions/facts to logical notation

• $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 3k \lor n = 3k + 1 \lor n = 3k + 2).$

• **Step 4:** Choose an appropriate proof structure. Use the assumptions/facts to prove the claim.

イロト 不同 トイヨト イヨト ヨー うらつ

Structure

- Disjunction in the assumptions \rightarrow proof by cases
- Disjunction in the **claim** \rightarrow proof structure for disjunction
- Assumption: $P \lor Q$.
- Claim: $S \vee R$.

Assume $P \lor Q$ **Case 1:** Assume P. \vdots # prove RThen R. **Case 2:** Assume Q. \vdots # prove SThen S. Thus $R \lor S$.# introduce disjunction

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ クへの

Solution

Assume $n \in \mathbb{N}$. # n is a typical element of \mathbb{N} Then $\exists k \in \mathbb{N}, n = 3k \lor n = 3k + 1 \lor n = 3k + 2$. # properties of \mathbb{N} \vdots Then $(\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # true in all possible cases Then $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # introduction of \forall

イロト 不同 トイヨト イヨト ヨー うらつ

Solution

Assume $n \in \mathbb{N}$. # n is a typical element of \mathbb{N} Then $\exists k \in \mathbb{N}, n = 3k \lor n = 3k + 1 \lor n = 3k + 2$. # properties of \mathbb{N} Let $k_0 \in \mathbb{N}$ be such that $n = 3k_0 \lor n = 3k_0 + 1 \lor n = 3k_0 + 2$.# instantiate \exists

Then $(\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # true in all possible cases Then $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # introduction of \forall

Solution

Assume $n \in \mathbb{N}$. # n is a typical element of \mathbb{N} Then $\exists k \in \mathbb{N}, n = 3k \lor n = 3k + 1 \lor n = 3k + 2$. # properties of \mathbb{N} Let $k_0 \in \mathbb{N}$ be such that $n = 3k_0 \lor n = 3k_0 + 1 \lor n = 3k_0 + 2$.# instantiate \exists Case 1: Assume $n = 3k_0$. Then $n^2 = 9k_0^2 = 3(3k_0^2)$. # algebra Then $\exists k \in \mathbb{N}, n^2 = 3k$. # $k = 3k_0^2, k \in \mathbb{N}$ \vdots Then $(\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # true in all possible cases Then $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # introduction of \forall

Solution

Assume $n \in \mathbb{N}$. # n is a typical element of \mathbb{N} Then $\exists k \in \mathbb{N}$, $n = 3k \lor n = 3k + 1 \lor n = 3k + 2$. # properties of \mathbb{N} Let $k_0 \in \mathbb{N}$ be such that $n = 3k_0 \lor n = 3k_0 + 1 \lor n = 3k_0 + 2$. # instantiate \exists Case 1: Assume $n = 3k_0$. Then $n^2 = 9k_0^2 = 3(3k_0^2)$. # algebra Then $\exists k \in \mathbb{N}$, $n^2 = 3k$. # $k = 3k_0^2$, $k \in \mathbb{N}$ Case 2: Assume $n = 3k_0 + 1$. Then $n^2 = 9k_0^2 + 6k + 1 = 3(3k_0^2 + 2k_0) + 1$. # algebra Then $\exists k \in \mathbb{N}$, $n^2 = 3k + 1$. # $k = 3k_0^2 + 2k_0$, $k \in \mathbb{N}$. Then $(\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # true in all possible cases Then $\forall n \in \mathbb{N}$, $(\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # introduction of \forall

Solution

Assume $n \in \mathbb{N}$. # n is a typical element of \mathbb{N} Then $\exists k \in \mathbb{N}, n = 3k \lor n = 3k + 1 \lor n = 3k + 2$. # properties of \mathbb{N} Let $k_0 \in \mathbb{N}$ be such that $n = 3k_0 \lor n = 3k_0 + 1 \lor n = 3k_0 + 2$.# instantiate \exists Case 1: Assume $n = 3k_0$. Then $n^2 = 9k_0^2 = 3(3k_0^2)$. # algebra Then $\exists k \in \mathbb{N}, n^2 = 3k$. # $k = 3k_0^2, k \in \mathbb{N}$ Case 2: Assume $n = 3k_0 + 1$. Then $n^2 = 9k_0^2 + 6k + 1 = 3(3k_0^2 + 2k_0) + 1$. # algebra Then $\exists k \in \mathbb{N}, n^2 = 3k + 1$. # $k = 3k_0^2 + 2k_0, k \in \mathbb{N}$ Case 3: Assume $n = 3k_0 + 2$. Then $n^2 = 9k_0^2 + 12k + 4 = 3(3k_0^2 + 4k_0 + 1) + 1$. # algebra Then $\exists k \in \mathbb{N}, n^2 = 3k + 1$. # $k = 3k_0^2 + 4k_0 + 1, k \in \mathbb{N}$ Then $(\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # true in all possible cases Then $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n^2 = 3k) \lor (\exists k \in \mathbb{N}, n^2 = 3k + 1)$. # introduction of \forall

Non-Boolean Functions in Logical Statements

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mathematical Expression and Reasoning

Non-Boolean Functions in Logical Statements

- Suppose we want to use properties of a non-boolean function: |x| denotes floor of x:
 - $\lfloor x \rfloor : \mathbb{R} \to \mathbb{Z}.$
 - $\lfloor x \rfloor$: the largest integer $\leq x$.
- Non-boolean functions cannot take the place of predicates.
- How can we use them?
 - Use **predicates** to make and/or verify claims about non-boolean functions.
 - $\forall \mathbf{x} \in \mathbb{R}, \ \lfloor \mathbf{x} \rfloor < \mathbf{x} + \mathbf{1}.$
- non-boolean functions are **not**:
 - Variables: $\forall |x| \in \mathbb{R}, P \longrightarrow \text{incorrect}$
 - Predicates: $\forall x \in \mathbb{R}, [x] \lor [x+1] \rightarrow \text{incorrect}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Non-Boolean Functions in Logical Statements

Exercise

• Prove $\forall x \in \mathbb{R}, \lfloor x \rfloor < x + 1$.

Assume $x \in \mathbb{R}$. # x is a typical element of \mathbb{R} Then $\lfloor x \rfloor \leq x$. # by **definition** of floor Then $\lfloor x \rfloor < x + 1$. # x < x + 1 and transitivity of <Then $\forall x \in \mathbb{R}, |x| < x + 1$. # introduce \forall

イロト 不同 トイヨト イヨト ヨー うらつ

Substituting Known Results

- * ロ * * @ * * 注 * * 注 * のへぐ

Mathematical Expression and Reasoning

Substituting Known Results

- To make proofs shorter and modular, some of the required results might be proved **separately**, and then be **referred** to.
- Existing theorems/lemmas can also be reused.

•
$$\mathbf{C_1}: \forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1/(y^2 + 2) < 3.$$

Theorem 1: $\forall x \in \mathbb{R}, x > 0 \Rightarrow 1/(x+2) < 3.$

Substituting Known Results

Exercise

- Use Theorem 1 to prove C₁
- $\mathbf{C_1}: \forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1/(y^2 + 2) < 3.$

Theorem 1: $\forall x \in \mathbb{R}, x > 0 \Rightarrow 1/(x+2) < 3.$

Proof:

Assume $y \in \mathbb{R}$. # y is a typical element of \mathbb{R} : Then $\forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1/(y^2 + 2) < 3$.

イロト 不同 トイヨト イヨト ヨー うらう

Substituting Known Results

• Use Theorem 1 to prove C₁

•
$$\mathbf{C_1}: \forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1/(y^2 + 2) < 3.$$

Theorem 1: $\forall x \in \mathbb{R}, x > 0 \Rightarrow 1/(x+2) < 3.$

Proof:

Assume $y \in \mathbb{R}$. # y is a typical element of \mathbb{R} Assume $y \neq 0$. # antecedent Then $y^2 \neq 0$. # $y \neq 0$ Then $y^2 \in \mathbb{R}$ and $y^2 \ge 0$. # \mathbb{R} closed under \times , squares are ≥ 0 Then $y^2 > 0$. # $y^2 \ge 0$ and $y^2 \neq 0$. Then $1/(y^2 + 2) < 3$. # by **Theorem 1** Then $y \neq 0 \Rightarrow 1/(y^2 + 2) < 3$. # introduction of \Rightarrow Then $\forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1/(y^2 + 2) < 3$. # introduction of \forall

イロト 不同 トイヨト イヨト ヨー うらう

Inference Rules: Building/Breaking Formulas

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mathematical Expression and Reasoning

- Most of the times, claims are **not just** predicates.
- We need to be able to **reduce** claims to simpler statement, or **combine** simpler statements to build more complex ones.

• Inference Rules:

- Introduction Rules: rules that allow making up more complex logical sentences from simpler ones.
- Elimination Rules: rules that allow reducing a logical sentence to simpler sentences.

イロト 不同 トイヨト イヨト ヨー うらう

Introduction Rules

• For each rule, if **everything** that is **above** the line is already known/shown, **anything** that is **below** the line can be conclude.

$[\Rightarrow I]$ implication introduction:	
(direct)	(indirect)
Assume A	Assume $\neg B$
:	÷
B	$\neg A$
$A \Rightarrow B$	$A \Rightarrow B$

 $[\forall I]$ universal introduction:

Assume $a \in D$: P(a) $\forall x \in D, P(x)$

 $[\Leftrightarrow\!I]$ bi-implication introduction:

 $\begin{array}{c} A \Rightarrow B \\ B \Rightarrow A \\ \hline A \Leftrightarrow B \end{array}$

 $[\exists I]$ existential introduction:

$$P(a)$$

$$a \in D$$

$$\exists x \in D, P(x)$$

Introduction Rules

• For each rule, if **everything** that is **above** the line is already known/shown, **anything** that is **below** the line can be conclude.

 $[\neg I]$ negation introduction:

 $[\lor I]$ disjunction introduction:

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Assume A

 $\begin{array}{c} \vdots \\ contradiction \\ \neg A \end{array} \qquad \qquad \begin{array}{c} A \\ \hline A \lor B \\ B \lor A \end{array} \qquad \begin{array}{c} A \\ \hline A \lor \neg A \end{array}$

[\land I] conjunction introduction:

 $\begin{array}{c} A \\ B \\ \hline A \wedge B \end{array}$

Elimination Rules

• For each rule, if **everything** that is **above** the line is already known/shown, **anything** that is **below** the line can be conclude.

$[\Rightarrow E]$ implication	elimination:
(Modus	(Modus
Ponens)	Tollens)
$A \Rightarrow B$	$A \Rightarrow B$
Α	$\neg B$
В	$\neg A$

 $[\forall E]$ universal elimination:

$$\forall x \in D, P(x) \\ a \in D \\ \hline P(a)$$

 $[\Leftrightarrow \! \mathrm{E}]$ bi-implication elimination:

 $\begin{array}{c} A \Leftrightarrow B \\ \hline A \Rightarrow B \\ B \Rightarrow A \end{array}$

 $[\exists E]$ existential elimination:

 $\exists x \in D, P(x)$ Let $a \in D$ such that P(a)

SOA

Elimination Rules

• For each rule, if **everything** that is **above** the line is already known/shown, **anything** that is **below** the line can be conclude.

$[\neg \mathbf{E}]$ negation elimination:

 $[\lor E]$ disjunction elimination:

$$\frac{\neg \neg A}{A} \quad \frac{A}{\neg A} \quad A \lor B \quad A$$

A B