Chapter 3
 Formal Proofs

Bahar Aameri
Department of Computer Science
University of Toronto

Feb 06, 2015

Today's Topics

- Last Lecture: Exercise on Proof by Cases
- Non-Boolean Functions in Logical Statements
- Substituting Known Results
- Inference Rules: Building/Breaking Formulas

Chapter 3 Formal Proofs

Exercise on Proof by Cases

Proof by Cases

Exercise

- Prove that the square of a natural is a multiple of 3 or a multiple of 3 plus 1.

Solution

- Step 1: Translate the claim to logical notation.
- $\forall n \in \mathbb{N},\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$.
- Step 2: Find a plan for the proof:
- Consider three cases: $n=3 k$ or $n=3 k+1$ or $n=3 k+2$.
- Step 3: Translate the assumptions/facts to logical notation
- $\forall n \in \mathbb{N},(\exists k \in \mathbb{N}, n=3 k \vee n=3 k+1 \vee n=3 k+2)$.
- Step 4: Choose an appropriate proof structure. Use the assumptions/facts to prove the claim.

Proof by Cases

Structure

- Disjunction in the assumptions \rightarrow proof by cases
- Disjunction in the claim \rightarrow proof structure for disjunction
- Assumption: $P \vee Q$.
- Claim: $S \vee R$.

Assume $P \vee Q$
Case 1: Assume P.
:\# prove R
Then R.
Case 2: Assume Q.
:\# prove S
Then S.
Thus $R \vee S$.\# introduce disjunction

Proof by Cases

Solution

Assume $n \in \mathbb{N}$. \#n is a typical element of \mathbb{N}
Then $\exists k \in \mathbb{N}, n=3 k \vee n=3 k+1 \vee n=3 k+2$. \# properties of \mathbb{N}
:
Then $\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# true in all possible cases Then $\forall n \in \mathbb{N},\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# introduction of \forall

Proof by Cases

Solution

Assume $n \in \mathbb{N}$. \# n is a typical element of \mathbb{N}
Then $\exists k \in \mathbb{N}, n=3 k \vee n=3 k+1 \vee n=3 k+2$. \# properties of \mathbb{N}
Let $k_{0} \in \mathbb{N}$ be such that $n=3 k_{0} \vee n=3 k_{0}+1 \vee n=3 k_{0}+2$. \# instantiate \exists

Then $\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# true in all possible cases Then $\forall n \in \mathbb{N},\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# introduction of \forall

Proof by Cases

Solution

Assume $n \in \mathbb{N}$. \#n is a typical element of \mathbb{N}
Then $\exists k \in \mathbb{N}, n=3 k \vee n=3 k+1 \vee n=3 k+2$. \# properties of \mathbb{N}
Let $k_{0} \in \mathbb{N}$ be such that $n=3 k_{0} \vee n=3 k_{0}+1 \vee n=3 k_{0}+2$.\# instantiate \exists
Case 1: Assume $n=3 k_{0}$.
Then $n^{2}=9 k_{0}^{2}=3\left(3 k_{0}^{2}\right)$. \# algebra
Then $\exists k \in \mathbb{N}, n^{2}=3 k$. $\# k=3 k_{0}^{2}, k \in \mathbb{N}$
:
Then $\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# true in all possible cases Then $\forall n \in \mathbb{N},\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# introduction of \forall

Proof by Cases

Solution

Assume $n \in \mathbb{N}$. \# n is a typical element of \mathbb{N}
Then $\exists k \in \mathbb{N}, n=3 k \vee n=3 k+1 \vee n=3 k+2$. \# properties of \mathbb{N}
Let $k_{0} \in \mathbb{N}$ be such that $n=3 k_{0} \vee n=3 k_{0}+1 \vee n=3 k_{0}+2$. \# instantiate \exists
Case 1: Assume $n=3 k_{0}$.
Then $n^{2}=9 k_{0}^{2}=3\left(3 k_{0}^{2}\right)$. \# algebra
Then $\exists k \in \mathbb{N}, n^{2}=3 k . \# k=3 k_{0}^{2}, k \in \mathbb{N}$
Case 2: Assume $n=3 k_{0}+1$.
Then $n^{2}=9 k_{0}^{2}+6 k+1=3\left(3 k_{0}^{2}+2 k_{0}\right)+1$. \# algebra
Then $\exists k \in \mathbb{N}, n^{2}=3 k+1$. $\# k=3 k_{0}^{2}+2 k_{0}, k \in \mathbb{N}$

Then $\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# true in all possible cases Then $\forall n \in \mathbb{N},\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# introduction of \forall

Proof by Cases

Solution

Assume $n \in \mathbb{N}$. \# n is a typical element of \mathbb{N}
Then $\exists k \in \mathbb{N}, n=3 k \vee n=3 k+1 \vee n=3 k+2$. \# properties of \mathbb{N}
Let $k_{0} \in \mathbb{N}$ be such that $n=3 k_{0} \vee n=3 k_{0}+1 \vee n=3 k_{0}+2$.\# instantiate \exists
Case 1: Assume $n=3 k_{0}$.
Then $n^{2}=9 k_{0}^{2}=3\left(3 k_{0}^{2}\right)$. \# algebra
Then $\exists k \in \mathbb{N}, n^{2}=3 k . \# k=3 k_{0}^{2}, k \in \mathbb{N}$
Case 2: Assume $n=3 k_{0}+1$.
Then $n^{2}=9 k_{0}^{2}+6 k+1=3\left(3 k_{0}^{2}+2 k_{0}\right)+1$. \# algebra
Then $\exists k \in \mathbb{N}, n^{2}=3 k+1 . \# k=3 k_{0}^{2}+2 k_{0}, k \in \mathbb{N}$
Case 3: Assume $n=3 k_{0}+2$.
Then $n^{2}=9 k_{0}^{2}+12 k+4=3\left(3 k_{0}^{2}+4 k_{0}+1\right)+1$. \# algebra
Then $\exists k \in \mathbb{N}, n^{2}=3 k+1 . \# k=3 k_{0}^{2}+4 k_{0}+1, k \in \mathbb{N}$
Then $\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# true in all possible cases Then $\forall n \in \mathbb{N},\left(\exists k \in \mathbb{N}, n^{2}=3 k\right) \vee\left(\exists k \in \mathbb{N}, n^{2}=3 k+1\right)$. \# introduction of \forall

Chapter 3 Formal Proofs

Non-Boolean Functions in Logical Statements

Non-Boolean Functions in Logical Statements

- Suppose we want to use properties of a non-boolean function: $\lfloor x\rfloor$ denotes floor of x :
- $\lfloor x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}$.
- $\lfloor x\rfloor$: the largest integer $\leq x$.
- Non-boolean functions cannot take the place of predicates.
- How can we use them?
- Use predicates to make and/or verify claims about non-boolean functions.
- $\forall \mathbf{x} \in \mathbb{R},\lfloor\mathbf{x}\rfloor<\mathbf{x}+\mathbf{1}$.
- non-boolean functions are not:
- Variables:
$\forall\lfloor x\rfloor \in \mathbb{R}, P \quad \rightarrow$ incorrect
- Predicates:
$\forall x \in \mathbb{R},\lfloor x\rfloor \vee\lfloor x+1\rfloor \quad \rightarrow$ incorrect

Non-Boolean Functions in Logical Statements

Exercise

- Prove $\forall x \in \mathbb{R},\lfloor x\rfloor<x+1$.

Assume $x \in \mathbb{R} . \# x$ is a typical element of \mathbb{R}
Then $\lfloor x\rfloor \leq x$. \# by definition of floor
Then $\lfloor x\rfloor<x+1$. \# $x<x+1$ and transitivity of $<$
Then $\forall x \in \mathbb{R},\lfloor x\rfloor<x+1$. \# introduce \forall

Chapter 3 Formal Proofs

Substituting Known Results

Substituting Known Results

- To make proofs shorter and modular, some of the required results might be proved separately, and then be referred to.
- Existing theorems/lemmas can also be reused.
- $\mathbf{C}_{1}: \forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1 /\left(y^{2}+2\right)<3$.

Theorem 1: $\forall x \in \mathbb{R}, x>0 \Rightarrow 1 /(x+2)<3$.

Substituting Known Results

Exercise

- Use Theorem 1 to prove \mathbf{C}_{1}
- $\mathbf{C}_{1}: \forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1 /\left(y^{2}+2\right)<3$.

Theorem 1: $\forall x \in \mathbb{R}, x>0 \Rightarrow 1 /(x+2)<3$.

Proof:

Assume $y \in \mathbb{R} . \# y$ is a typical element of \mathbb{R}

Then $\forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1 /\left(y^{2}+2\right)<3$.

Substituting Known Results

- Use Theorem 1 to prove \mathbf{C}_{1}
- $\mathbf{C}_{1}: \forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1 /\left(y^{2}+2\right)<3$.

Theorem 1: $\forall x \in \mathbb{R}, x>0 \Rightarrow 1 /(x+2)<3$.

Proof:

Assume $y \in \mathbb{R} . \# y$ is a typical element of \mathbb{R}
Assume $y \neq 0$. \# antecedent
Then $y^{2} \neq 0$. $\# y \neq 0$
Then $y^{2} \in \mathbb{R}$ and $y^{2} \geq 0$. \# \mathbb{R} closed under x, squares are ≥ 0
Then $y^{2}>0$. \# $y^{2} \geq 0$ and $y^{2} \neq 0$.
Then $1 /\left(y^{2}+2\right)<3$. \# by Theorem 1
Then $y \neq 0 \Rightarrow 1 /\left(y^{2}+2\right)<3$. \# introduction of \Rightarrow
Then $\forall y \in \mathbb{R}, y \neq 0 \Rightarrow 1 /\left(y^{2}+2\right)<3$. \# introduction of \forall

Chapter 3 Formal Proofs

Inference Rules: Building/Breaking Formulas

Inference Rules: Building/Breaking Formulas

- Most of the times, claims are not just predicates.
- We need to be able to reduce claims to simpler statement, or combine simpler statements to build more complex ones.
- Inference Rules:
- Introduction Rules: rules that allow making up more complex logical sentences from simpler ones.
- Elimination Rules: rules that allow reducing a logical sentence to simpler sentences.

Inference Rules: Building/Breaking Formulas

Introduction Rules

- For each rule, if everything that is above the line is already known/shown, anything that is below the line can be conclude.
$[\Rightarrow \mathrm{I}]$ implication introduction:
$[\forall I]$ universal introduction:

Assume $a \in D$

Assume $A \quad$ Assume $\neg B$
$\begin{array}{cc}\vdots & \vdots \\ B & \neg A \\ A \Rightarrow B & A \Rightarrow B\end{array}$
$[\Leftrightarrow \mathrm{I}]$ bi-implication introduction:

$$
\begin{gathered}
A \Rightarrow B \\
B \Rightarrow A \\
\hline A \Leftrightarrow B
\end{gathered}
$$

(direct) (indirect)

$$
\text { Assume } \neg B
$$

$$
\frac{\neg A}{A \Rightarrow B}
$$

[$\exists \mathrm{I}$] existential introduction:

$$
\begin{aligned}
& P(a) \\
& a \in D \\
& \hline \exists x \in D, P(x)
\end{aligned}
$$

Inference Rules: Building/Breaking Formulas

Introduction Rules

- For each rule, if everything that is above the line is already known/shown, anything that is below the line can be conclude.
$[\neg I]$ negation introduction:
[VI] disjunction introduction:
Assume A
\vdots
contradiction
$\neg A$

$$
\begin{aligned}
& \frac{A}{A \vee B} \\
& B \vee A
\end{aligned} \quad A \vee \neg A
$$

$[\wedge I]$ conjunction introduction:

$$
\begin{aligned}
& A \\
& B \\
& \hline A \wedge B
\end{aligned}
$$

Inference Rules: Building/Breaking Formulas

Elimination Rules

- For each rule, if everything that is above the line is already known/shown, anything that is below the line can be conclude.
$[\Rightarrow$ E] implication elimination:
$[\forall E]$ universal elimination:

(Modus		(Modus
Ponens)		Tollens)
$A \Rightarrow B$		$A \Rightarrow B$
A		$\neg B$
B		$\neg A$

$$
\begin{aligned}
& \forall x \in D, P(x) \\
& a \in D \\
& \hline P(a)
\end{aligned}
$$

$[\Leftrightarrow E]$ bi-implication elimination:

$$
\begin{gathered}
A \Leftrightarrow B \\
\hline A \Rightarrow B \\
B \Rightarrow A
\end{gathered}
$$

$[\exists \mathrm{E}]$ existential elimination:
$\frac{\exists x \in D, P(x)}{\text { Let } a \in D \text { such that } P(a)}$

Inference Rules: Building/Breaking Formulas

Elimination Rules

- For each rule, if everything that is above the line is already known/shown, anything that is below the line can be conclude.
$[\neg \mathrm{E}]$ negation elimination:
[VE] disjunction elimination:

$$
\begin{array}{ll}
\neg \neg A \\
\hline A & A \\
\frac{\neg A}{\text { contradiction }}
\end{array}
$$

$$
\begin{array}{ll}
A \vee B \\
\neg A
\end{array} \quad \begin{aligned}
& A \vee B \\
& \hline B
\end{aligned} \quad \begin{aligned}
& \neg B \\
& \hline
\end{aligned}
$$

$[\wedge \mathrm{E}]$ conjunction elimination:
$\frac{A \wedge B}{A}$
B

