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Proof by Cases

Exercise

Prove that the square of a natural is a multiple of 3 or a multiple of 3
plus 1.

Solution

Step 1: Translate the claim to logical notation.

∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1).

Step 2: Find a plan for the proof:
Consider three cases: n = 3k or n = 3k + 1 or n = 3k + 2.

Step 3: Translate the assumptions/facts to logical notation

∀n ∈ N, (∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2).

Step 4: Choose an appropriate proof structure. Use the
assumptions/facts to prove the claim.
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Proof by Cases

Structure

Disjunction in the assumptions → proof by cases

Disjunction in the claim → proof structure for disjunction

Assumption: P ∨Q.

Claim: S ∨R.

Assume P ∨Q
Case 1: Assume P .

...# prove R
Then R.

Case 2: Assume Q.
...# prove S

Then S.
Thus R ∨ S.# introduce disjunction
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Proof by Cases

Solution

Assume n ∈ N. # n is a typical element of N
Then ∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2. # properties of N

.

.

.
Then (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # true in all possible cases

Then ∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # introduction of ∀
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Proof by Cases

Solution

Assume n ∈ N. # n is a typical element of N
Then ∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2. # properties of N
Let k0 ∈ N be such that n = 3k0 ∨ n = 3k0 + 1 ∨ n = 3k0 + 2.# instantiate ∃

.

.

.
Then (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # true in all possible cases

Then ∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # introduction of ∀

Mathematical Expression and Reasoning 7



Proof by Cases

Solution

Assume n ∈ N. # n is a typical element of N
Then ∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2. # properties of N
Let k0 ∈ N be such that n = 3k0 ∨ n = 3k0 + 1 ∨ n = 3k0 + 2.# instantiate ∃
Case 1: Assume n = 3k0.

Then n2 = 9k2
0 = 3(3k2

0). # algebra

Then ∃k ∈ N, n2 = 3k. # k = 3k2
0, k ∈ N

.

.

.
Then (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # true in all possible cases

Then ∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # introduction of ∀
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Proof by Cases

Solution

Assume n ∈ N. # n is a typical element of N
Then ∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2. # properties of N
Let k0 ∈ N be such that n = 3k0 ∨n = 3k0 +1∨n = 3k0 +2. # instantiate ∃
Case 1: Assume n = 3k0.

Then n2 = 9k2
0 = 3(3k2

0). # algebra

Then ∃k ∈ N, n2 = 3k. # k = 3k2
0, k ∈ N

Case 2: Assume n = 3k0 + 1.
Then n2 = 9k2

0 + 6k + 1 = 3(3k2
0 + 2k0) + 1. # algebra

Then ∃k ∈ N, n2 = 3k + 1. # k = 3k2
0 + 2k0, k ∈ N

.

.

.
Then (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # true in all possible cases

Then ∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # introduction of ∀
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Proof by Cases

Solution

Assume n ∈ N. # n is a typical element of N
Then ∃k ∈ N, n = 3k ∨ n = 3k + 1 ∨ n = 3k + 2. # properties of N
Let k0 ∈ N be such that n = 3k0 ∨ n = 3k0 + 1 ∨ n = 3k0 + 2.# instantiate ∃
Case 1: Assume n = 3k0.

Then n2 = 9k2
0 = 3(3k2

0). # algebra

Then ∃k ∈ N, n2 = 3k. # k = 3k2
0, k ∈ N

Case 2: Assume n = 3k0 + 1.
Then n2 = 9k2

0 + 6k + 1 = 3(3k2
0 + 2k0) + 1. # algebra

Then ∃k ∈ N, n2 = 3k + 1. # k = 3k2
0 + 2k0, k ∈ N

Case 3: Assume n = 3k0 + 2.
Then n2 = 9k2

0 + 12k + 4 = 3(3k2
0 + 4k0 + 1) + 1. # algebra

Then ∃k ∈ N, n2 = 3k + 1. # k = 3k2
0 + 4k0 + 1, k ∈ N

Then (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # true in all possible cases
Then ∀n ∈ N, (∃k ∈ N, n2 = 3k) ∨ (∃k ∈ N, n2 = 3k + 1). # introduction of ∀
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Non-Boolean Functions in Logical Statements

Suppose we want to use properties of a non-boolean function:
bxc denotes floor of x:

bxc : R→ Z.
bxc: the largest integer ≤ x.

Non-boolean functions cannot take the place of predicates.

How can we use them?
Use predicates to make and/or verify claims about non-boolean
functions.

∀x ∈ R, bxc < x+ 1.

non-boolean functions are not:
Variables:
∀bxc ∈ R, P → incorrect

Predicates:
∀x ∈ R, bxc ∨ bx+ 1c → incorrect
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Non-Boolean Functions in Logical Statements

Exercise

Prove ∀x ∈ R, bxc < x + 1.

Assume x ∈ R. # x is a typical element of R
Then bxc ≤ x. # by definition of floor
Then bxc < x + 1. # x < x + 1 and transitivity of <

Then ∀x ∈ R, bxc < x + 1. # introduce ∀
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Substituting Known Results

To make proofs shorter and modular, some of the required results
might be proved separately, and then be referred to.

Existing theorems/lemmas can also be reused.

C1 :∀y ∈ R, y 6= 0⇒ 1/(y2 + 2) < 3.

Theorem 1: ∀x ∈ R, x > 0⇒ 1/(x + 2) < 3.
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Substituting Known Results

Exercise

Use Theorem 1 to prove C1

C1 :∀y ∈ R, y 6= 0⇒ 1/(y2 + 2) < 3.

Theorem 1: ∀x ∈ R, x > 0⇒ 1/(x + 2) < 3.

Proof:

Assume y ∈ R. # y is a typical element of R
...

Then ∀y ∈ R, y 6= 0⇒ 1/(y2 + 2) < 3.
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Substituting Known Results

Use Theorem 1 to prove C1

C1 :∀y ∈ R, y 6= 0⇒ 1/(y2 + 2) < 3.

Theorem 1: ∀x ∈ R, x > 0⇒ 1/(x + 2) < 3.

Proof:

Assume y ∈ R. # y is a typical element of R
Assume y 6= 0. # antecedent

Then y2 6= 0. # y 6= 0
Then y2 ∈ R and y2 ≥ 0. # R closed under ×, squares are ≥ 0
Then y2 > 0. # y2 ≥ 0 and y2 6= 0.
Then 1/(y2 + 2) < 3. # by Theorem 1

Then y 6= 0⇒ 1/(y2 + 2) < 3. # introduction of ⇒
Then ∀y ∈ R, y 6= 0⇒ 1/(y2 + 2) < 3. # introduction of ∀
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Inference Rules: Building/Breaking Formulas

Most of the times, claims are not just predicates.

We need to be able to reduce claims to simpler statement, or
combine simpler statements to build more complex ones.

Inference Rules:
Introduction Rules: rules that allow making up more complex logical
sentences from simpler ones.

Elimination Rules: rules that allow reducing a logical sentence to
simpler sentences.
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Inference Rules: Building/Breaking Formulas

Introduction Rules

For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[⇒I] implication introduction:

(direct)

Assume A
...
B

A⇒ B

(indirect)

Assume ¬B
...
¬A

A⇒ B

[⇔I] bi-implication introduction:

A⇒ B
B ⇒ A

A⇔ B

[∀I] universal introduction:

Assume a ∈ D
...
P (a)

∀x ∈ D,P (x)

[∃I] existential introduction:

P (a)
a ∈ D

∃x ∈ D,P (x)
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Inference Rules: Building/Breaking Formulas

Introduction Rules

For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[¬I] negation introduction:

Assume A
...
contradiction

¬A

[∧I] conjunction introduction:

A
B

A ∧B

[∨I] disjunction introduction:

A

A ∨B
B ∨A

A ∨ ¬A
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Inference Rules: Building/Breaking Formulas

Elimination Rules

For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[⇒E] implication elimination:
(Modus
Ponens)

A⇒ B
A

B

(Modus
Tollens)
A⇒ B
¬B
¬A

[⇔E] bi-implication elimination:

A⇔ B

A⇒ B
B ⇒ A

[∀E] universal elimination:

∀x ∈ D,P (x)
a ∈ D

P (a)

[∃E] existential elimination:

∃x ∈ D,P (x)

Let a ∈ D such that P (a)
...
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Inference Rules: Building/Breaking Formulas

Elimination Rules

For each rule, if everything that is above the line is already
known/shown, anything that is below the line can be conclude.

[¬E] negation elimination:

¬¬A
A

A
¬A
contradiction

[∧E] conjunction elimination:

A ∧B

A
B

[∨E] disjunction elimination:

A ∨B
¬A
B

A ∨B
¬B
A
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