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Announcements

TERM TEST 1:

Time: Tuesday FEB 03, 2:10-3:30 Location: MP203

Time: Thursday FEB 05, 2:10-3:30 Location: MP103

CONTENT: CHAPTER 2

TA OFFICE HOURS:

Mon., Feb 02, 1-3pm, 4:30-6:30pm in BA3201

Wed., Feb 04, 12-2pm, 3:30-5:30pm in BA3201

ASSIGNMENT 1:

Due on Friday Jan 30, before midnight.

TA OFFICE HOURS for Assignment 1:

Tuesday, Jan 27, 5-7pm in BA3201

Thursday, Jan 29, 3:30-5:30pm in BA3201
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Topics: How to Prove?

DIRECT PROOF

DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

DIRECT PROOF OF THE EXISTENTIAL

INDIRECT PROOF

INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

PROOF BY CONTRADICTION

MULTIPLE QUANTIFIERS, IMPLICATIONS, AND CONJUNCTIONS

EXAMPLE OF PROVING A STATEMENT ABOUT A SEQUENCE

EXAMPLE OF DISPROVING A STATEMENT ABOUT A SEQUENCE
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Proof

Proof

A PROOF is an ARGUMENT that is PRECISE and LOGICALLY CORRECT.

FINDING A PROOF: It is like solving a problem

Understand the problem:
Know what is REQUIRED
Know what is GIVEN
RE-STATE the problem in your own words;
Might help to draw some DIAGRAMS.

Plan solution(s):
Use SIMILAR results.
Work BACKWARDS:
Solving SIMPLER VERSIONS of the problem.

Carry out your plan
If needed, REPEAT (parts of) the earlier steps.
If you are still stuck, identify exactly what information/assumptions you
require that are missing and find a way to achieve them.

Review and verify your solution
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Proof Structure

General Structure of a Typical Proof

Given a set of ASSUMPTIONS, prove a CLAIM.
Start from the assumptions.

Derive a logical consequence, based on the assumptions.

Add the new consequence to the original set of assumptions.

Continue until the claim can be derived from the assumptions.

Prove P ⇒Q

Given P , prove Q:
Assume P. # Given assumption

Then R1. # by P or another known fact
Then R2. # by R1 or another known fact

...
Then Rn. # by Rn−1 or another known fact

Then Q. # by Rn or another known fact
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How to prove?

DIRECT PROOF

DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

INDIRECT PROOF

INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION
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Universally Quantified Implications

Reminder

C1: ∀x ∈ D, p(x)⇒ q(x).
p(x) is the ANTECEDENT.
q(x) is the CONSEQUENCE.
C1 is TRUE iff
for ALL elements in D, whenever p(x) is TRUE, q(x) is also TRUE.

How to prove ∀x ∈ D, p(x)⇒ q(x)?

Assume x is a generic member of D and p(x) is TRUE. (ASSUMPTIONS)
Show that q(x) is TRUE. (CLAIM)
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Direct Proof Structure for Universally Quantified Implications

Prove: ∀x ∈ D, p(x)⇒ q(x)

Assume x ∈ D. # x is a generic element of D
Assume p(x). # x has property p, the antecedent

Then r1(x). # by C1.0
Then r2(x). # by C1.1

...
Then q(x). # by C1.n

Then p(x)⇒ q(x). # assuming antecedent leads to consequent
Then ∀x ∈ D, p(x)⇒ q(x). # we only assumed x is a generic D
The EXPLANATION after # is justification for each step.
The INDENTATION shows the scope of the assumptions.
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Indirect Proof of Universally Quantified Implication

Reminder: Contrapositive

CONTRAPOSITIVE of P ⇒ Q: ¬Q⇒ ¬P .
Contrapositive of an implication is equivalent with the implication.

Indirect Proof of ∀x ∈ D, p(x)⇒ q(x)

p(x)⇒ q(x) is equivalent with ¬q(x)⇒ ¬p(x).
Proving ∀x ∈ D,¬q(x)⇒ ¬p(x), proves ∀x ∈ D, p(x)⇒ q(x)
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Structure of Indirect Proof for Universally Quantified Implication

Prove: ∀x ∈ D, p(x)⇒ q(x)

Assume x ∈ D. # x is a typical element of D
Assume ¬q(x). # negation of the CONSEQUENT!

...
Then ¬p(x). # negation of the ANTECEDENT!

Then ¬q(x)⇒¬p(x). # assuming ¬q(x) leads to ¬p(x)
Then p(x)⇒ q(x). # implication is equivalent to contrapositive

Then ∀x ∈ D, p(x)⇒ q(x). # x was a typical element of D
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How to prove?

DIRECT PROOF

DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

INDIRECT PROOF

INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

PROOF BY CONTRADICTION
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Proof by Contradiction

Prove: P ⇒ Q

Here’s the general format:
Assume ¬Q. # in order to derive a contradiction

... # some steps leading to a contradiction, say ¬P
Then ¬P . # contradiction, since P is known to be true

Then Q. # since assuming ¬Q leads to contradiction
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Proof by Contradiction: Example

Prove: there are infinitely many prime numbers.

Restate the problem: naming sets/predicates for this proof
P = {p ∈ N : p has exactly two factors}
SP: ∀n ∈ N, |P | > n
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Proof by Contradiction: Example

Proof by Contradiction ¬SP:

Assume ¬SP: ∃n ∈ N, |P | 6 n. # to derive a contradiction
Then there is a finite list, p1, . . . , pk of elements of P .

# at most n elements in the list
Then I can take the product p′ = p1 × · · · × pk.

# finite products are well-defined
Then p′ is the product of some natural numbers 2 and greater.

# 0, 1 aren’t primes, 2, 3 are
Then p′ > 1. # p′ is at least 6
Then p′ + 1 > 2. # add 1 to both sides
Then ∃p ∈ P, p divides p′ + 1.

# every integer > 2 (such as p′ + 1) has a prime divisor
Let p0 ∈ P be such that p0 divides p′ + 1.

# instantiate existential
Then p0 is one of p1, . . . , pk. # by assumption, the only primes
Then p0 divides p′ + 1− p′ = 1. # a divisor of each term divides difference
Then 1 ∈ P . Contradiction! # 1 is not prime

Then SP. # “assume ¬SP” leads to a contradiction

Lisa Yan (University of Toronto) Mathematical Expression and Reasoning January 28, 2015 14 / 25



How to prove?

DIRECT PROOF

DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

DIRECT PROOF OF THE EXISTENTIAL

INDIRECT PROOF

INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

PROOF BY CONTRADICTION
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Direct proof of the existential

Direct proof structure of the existential

The general form for a direct proof of ∃x ∈ D, p(x) is:
Let x = . . . # choose a particular element of the domain
Then x ∈ D. # this may be obvious, otherwise prove it

... # prove p(x)

Then p(x). # you’ve shown that x satisfies p
∃x ∈ D, p(x). # introduce existential
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How to prove?

DIRECT PROOF

DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

DIRECT PROOF OF THE EXISTENTIAL

INDIRECT PROOF

INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

PROOF BY CONTRADICTION

MULTIPLE QUANTIFIERS, IMPLICATIONS, AND CONJUNCTIONS
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Multiple quantifiers, implications, and conjunctions

Proof Structure for Multiple quantifiers, implications, and conjunctions:

Consider ∀x ∈ D,∃y ∈ D, p(x, y). The corresponding proof structure is:
Assume x ∈ D. # typical element of D

Let yx = . . . # choose an element that works
...

Then yx ∈ D. # verify that y ∈ D
...

Then p(x, yx). # y satisfies p(x, y)
Then ∃y, p(x, y). # introduce existential

Then ∀x ∈ D,∃y ∈ D, p(x, y). # introduce universal
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Multiple quantifiers, implications, and conjunctions: Example

Example: suppose a function f , constants a and l, and the following statement

∀e ∈ R, e > 0⇒ (∃d ∈ R, d > 0 ∧ (∀x ∈ R, 0 < |x− a| < d⇒ |f(x)− l| < e))

Direct proof: structure of the proof to prove this TRUE

Assume e ∈ R. # typical element of R
Assume e > 0. # antecedent

Let de = . . . # something helpful, probably depending on e
Then de ∈ R. # verify de is in the domain
Then de > 0. # show de is positive
Assume x ∈ R. # typical element of R

Assume 0 < |x− a| < de. # antecedent
...

Then |f(x)− l| < e. # inner consequent
Then 0 < |x− a| < de⇒ (|f(x)− l| < e). # introduce implication
Then ∀x ∈ R, 0 < |x− a| < de⇒ (|f(x)− l| < e). # introduce universal
Then ∃d ∈ R, d > 0∧ (∀x ∈ R, 0 < |x− a| < d⇒ (|f(x)− l| < e)). # introduce
existential

Then, e > 0⇒ (∃d ∈ R, d > 0 ∧ (∀x ∈ R, 0 < |x− a| < d⇒ (|f(x)− l| < e))).
Then ∀e ∈ R, e > 0⇒ (∃d ∈ R, d > 0 ∧ (∀x ∈ R, 0 < |x− a| < d⇒ (|f(x)− l| < e))).
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Multiple quantifiers, implications, and conjunctions: Example

Example: suppose a function f , constants a and l, and the following statement

∀e ∈ R, e > 0⇒ (∃d ∈ R, d > 0 ∧ (∀x ∈ R, 0 < |x− a| < d⇒ |f(x)− l| < e))

Prove by contradiction: negate the statement

¬(∀e ∈ R, e ≤ 0∨ (∃d ∈ R, d > 0∧ (∀x ∈ R, ¬(0 < |x− a| < d)∨ |f(x)− l| < e))))

∃e ∈ R, e > 0 ∧ (∀d ∈ R, d > 0⇒ (∃x ∈ R, 0 < |x− a| < d ∧ |f(x)− l| > e))
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How to prove?

DIRECT PROOF

DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

DIRECT PROOF OF THE EXISTENTIAL

INDIRECT PROOF

INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

PROOF BY CONTRADICTION

MULTIPLE QUANTIFIERS, IMPLICATIONS, AND CONJUNCTIONS

EXAMPLE OF PROVING A STATEMENT ABOUT A SEQUENCE
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Example of proving a statement about a sequence

Consider the statement to prove it:

∃i ∈ N, ∀j ∈ N, aj 6 i⇒ j < i and the sequence: (A1) 0, 1, 4, 9, 16, 25, . . .

Going back to our proof structure, we have:
Let i = . Then i ∈ N.
Assume j ∈ N. # typical element of N

Assume aj 6 i.
...

Then j < i.
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Example of proving a statement about a sequence

Consider the statement to prove it:

∃i ∈ N, ∀j ∈ N, aj 6 i⇒ j < i and the sequence: (A1) 0, 1, 4, 9, 16, 25, . . .

Thoughts:

we decide that setting i = 2 is a good idea, since then aj 6 i is only true for j = 0 and
j = 1, and these are smaller than 2.
Also, here, the contrapositive, ¬(j < i)⇒ ¬(aj 6 ai) is easier to work with.

Let i = 2. Then i ∈ N. # 2 ∈ N
Assume j ∈ N. # typical element of N

Assume ¬(j < i). # antecedent for contrapositive
Then j > 2. # negation of j < i when i = 2
Then aj = j2 > 22 = 4. # since aj = j2, and j > 2
Then aj > 2. # since 4 > 2

Then ¬(j < i)⇒¬(aj 6 2). # assuming antecedent leads to consequent
Then aj 6 2⇒ j < i. # implication equivalent to contrapositive

Then ∀j ∈ N, aj 6 i⇒ j < i. # introduce universal
Then ∃i ∈ N,∀j ∈ N, aj 6 i⇒ j < i. # introduce existential
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Example of disproving a statement about a sequence

Consider the statement to disprove it:

∃i ∈ N, ∀j ∈ N, j > i⇒ aj = ai and the sequence: (A2) 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, . . .

Disprove it: simply prove the negation: ∀i ∈ N, ∃j ∈ N, j > i ∧ aj 6= ai

Sketch in the outline of the proof:
Assume i ∈ N.

Let j = i+ 2. Then j ∈ N.
...

Then j > i ∧ aj 6= ai.
Then ∃j ∈ N, j > i ∧ aj 6= ai. # introduction of existential

Then ∀i ∈ N, ∃j ∈ N, j > i ∧ aj 6= ai. # introduction of universal
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