Chapter 2
 Logical Notation

Bahar Aameri
Department of Computer Science
University of Toronto

$$
\text { Jan 26, } 2015
$$

Announcements

- Term Test 1 :
- Time: Tuesday Feb 03, 2:10-3:30
- Location: MP203
- Chapter 2
- TA office Hours: TBA
- Assignment 1 is due on Friday Jan 30, before midnight.
- TA office Hours for Assignment 1:
- Tuesday, Jan 27, 5-7pm in BA3201
- Thursday, Jan 29, 3:30-5:30pm in BA3201

Today's Topics

- Review: Venn Diagram, Sets and Predicates
- Review: Logical Symbols, Translation between Logic and English
- Review: Logical Grammar and Arithmetic
- Review: Truth Tables
- Review: Application of Manipulation Rules

Chapter 2
 Logical Notation

Review: Venn Diagram, Sets and Predicates

Visualizing Relationships between Sets

Venn Diagram

- The rectangle represents the domain.
- Each circle represent a set in the domain.
- O in a part of a set means that this part must be occupied, i.e., there must be some element in there.
- \mathbf{X} in a part of a set means that this part must be empty, i.e., contains no element.
- Important: Do NOT put anything in regions that are not specified as empty or occupied.

Visualizing Relationships between Sets

S3: All quixotic humans are pernicious, but not raffish.

- U denotes the set of all humans,
P denotes the set of pernicious humans,
Q denotes the set of quixotic humans, and
R denotes the set of raffish humans.
- $Q \subseteq P, Q \cap R=\varnothing$

Review: Sets and Predicates

Predicates

An n-ary predicate $L\left(x_{1}, \ldots, x_{n}\right)$ is a boolean function returning True or False such that
$L\left(x_{1}, \ldots, x_{n}\right)=$ True iff $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ satisfies the property that is denoted by L.

Important Notes about Predicates

- $L(x)$ is not a set!
- In a logical statement, you cannot treat a symbol both as a set and a predicate symbol
- Incorrect use of notation: $\forall x, y \in E, x \in L, L(y)$.
- Correct version: $\forall x, y \in E, x \in L, y \in L$ or $\forall x, y \in E, L(x) \wedge L(y)$.
- Don't apply set operations over predicates! $\mathbf{P}(\mathbf{x}) \cap \mathbf{Q}(\mathbf{y})$ makes no sense
- Don't apply logical symbols over sets! $\mathbf{x} \in \mathbf{S} \wedge \mathbf{x} \in \mathbf{R}$ makes no sense
- Don't nest predicates!
$\mathbf{P}(\mathbf{Q}(\mathbf{x}))$ makes no sense

Chapter 2
 Logical Notation

Review: Logical Symbols, Translation between

Evaluating Statements

$\neg P$ is True iff P is False.
$P \wedge Q$ is True iff both P and Q are True.
$P \vee Q$ is True iff at least one of P or Q are True.
$P \Rightarrow Q$ is True iff at least one of $\neg P$ or Q are True.
$P \Leftrightarrow Q$ is True iff the truth values of P and Q are equal.
$\forall x \in D, S(x)$ is True iff all elements of D satisfy the property denoted by S.
$\exists x \in D, S(x)$ is True iff at least one element of D satisfies the property denoted by S.

Logical Notation and English

Order of Quantifiers matter!

(1) $\forall x \in$ Men, $\exists y \in$ Women, wife (y, x)
(2) $\exists x \in M e n, \forall y \in W o m e n, w i f e(y, x)$
(1) All men have wives.
(2) There exists a man such that all women are his wives!

Expressing Uniqueness

- All men have exactly one wife.

All men have at least one wife, and, All men have at most one wife.

- $\forall x \in M e n, \exists y \in$ Women, wife $(y, x) \wedge \forall z \in$ Women, wife $(z, x) \Rightarrow z=y$

Expressing Equality

- There are at least two different students who passed the same courses.
- $\exists x \in S, \exists y \in S, \forall c \in C,(x \neq y) \wedge(\operatorname{pass}(x, c) \Leftrightarrow \operatorname{pass}(y, c))$

Chapter 2
 Logical Notation

Review: Logical Grammar and Arithmetic

Well-Formed Formulas

Well-Formed Formulas (wff)

- Any predicate is a wff.
- If P is a wff, so is $\neg P$.
- If P and Q are wffs, so is $(P \wedge Q)$.
- If P and Q are wffs, so is $(P \vee Q)$.
- If P and Q are wffs, so is $(P \Rightarrow Q)$.
- If P and Q are wffs, so is $(P \Leftrightarrow Q)$.
- If P is a wff (possibly open in variable x) and D is a set, then $(\forall x \in D, P)$ is a wff.
- If P is a wff (possibly open in variable x) and D is a set, then $(\exists x \in D, P)$ is a wff.
- Nothing else is a wff.

Precedence decreases from top to bottom.

Logical Arithmetic

Commutative

$$
\begin{aligned}
& \text { - } P \wedge Q \Leftrightarrow Q \wedge P \\
& \text { - } P \vee Q \Leftrightarrow Q \vee P
\end{aligned}
$$

Associative

$$
\begin{aligned}
& \text { - } P \wedge(Q \wedge R) \Leftrightarrow(P \wedge Q) \wedge R \\
& \text { - } P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R
\end{aligned}
$$

Distributive

$$
\begin{aligned}
& \text { - } P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R) \\
& \text { - } P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R)
\end{aligned}
$$

Identity

$$
\text { - } P \wedge(Q \vee \neg Q) \Leftrightarrow P \Leftrightarrow P \vee(Q \wedge \neg Q)
$$

Idempotency

$$
\text { - } P \wedge P \Leftrightarrow P \Leftrightarrow P \vee P
$$

Chapter 2
 Logical Notation

Review: Truth Tables

Truth Tables

Truth Tables

In a truth table, we write all possible truth values for the predicates in a statement and compute the truth value of the statement under each of these truth assignments.

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Truth Tables

Evaluate S_{1}

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}:(\neg P \Rightarrow(\neg Q \Rightarrow \neg R)) \Leftrightarrow(R \Rightarrow(P \vee Q)) \\
& \mathbf{S}_{\mathbf{2}}: \neg P \Rightarrow(\neg Q \Rightarrow \neg R) \\
& \mathbf{S}_{\mathbf{3}}: R \Rightarrow(P \vee Q)
\end{aligned}
$$

P	Q	R	$\neg P$	$\neg Q$	$\neg R$	$\neg Q \Rightarrow \neg R$	S_{2}	$P \vee Q$	S_{3}	$\mathrm{~S}_{1}$
T	T	T	F	F	F	T	T	T	T	T
T	T	F	F	F	T	T	T	T	T	T
T	F	T	F	T	F	F	T	T	T	T
T	F	F	F	T	T	T	T	T	T	T
F	T	T	T	F	F	T	T	T	T	T
F	T	F	T	F	T	T	T	T	T	T
F	F	T	T	T	F	F	F	F	F	T
F	F	F	T	T	T	T	T	F	T	T

Chapter 2
 Logical Notation

Review: Application of Manipulation Rules

Application of Manipulation Rules

(1) Use manipulation Rules to show that $(P \vee Q) \wedge(P \vee \neg Q)$ is equal to P

$$
\begin{aligned}
(P \vee Q) \wedge(P \vee \neg Q) & \Leftrightarrow P \vee(Q \wedge \neg Q) \quad \text { \# distributive } \vee \text { over } \wedge \\
& \Leftrightarrow P \quad \text { \# Identity law }
\end{aligned}
$$

(0) Use manipulation Rules to show that the following statement is a tautology $((P \wedge Q) \Rightarrow R) \Rightarrow(P \Rightarrow(Q \Rightarrow R))$
$((P \wedge Q) \Rightarrow R) \Rightarrow(P \Rightarrow(Q \Rightarrow R)) \quad \Leftrightarrow \quad \neg(\neg(P \wedge Q) \vee R) \vee(\neg P \vee(\neg Q \vee R))$ \# implication
$\Leftrightarrow \quad \neg((\neg P \vee \neg Q) \vee R) \vee(\neg P \vee(\neg Q \vee R))$ \# DeMorgan's
$\Leftrightarrow \quad \neg((\neg P \vee \neg Q) \vee R) \vee((\neg P \vee \neg Q) \vee R)$ \# Associative
\Leftrightarrow True \# Definition of \vee

