Bahar Aameri

Department of Computer Science University of Toronto

Jan 26, 2015

Mathematical Expression and Reasoning

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

Announcements

- Term Test 1:
 - Time: Tuesday Feb 03, 2:10-3:30
 - Location: MP203
 - Chapter 2
 - TA office Hours: TBA
- Assignment 1 is due on Friday Jan 30, before midnight.
- TA office Hours for Assignment 1:
 - Tuesday, Jan 27, 5-7pm in **BA3201**
 - Thursday, Jan 29, 3:30-5:30pm in BA3201

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

- Review: Venn Diagram, Sets and Predicates
- Review: Logical Symbols, Translation between Logic and English
- Review: Logical Grammar and Arithmetic
- Review: Truth Tables
- Review: Application of Manipulation Rules

イロト 不同 トイヨト イヨト ヨー うらう

Review: Venn Diagram, Sets and Predicates

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の � �

Visualizing Relationships between Sets

Venn Diagram

- The **rectangle** represents the **domain**.
- Each **circle** represent **a set** in the domain.
- O in a part of a set means that this part must be **occupied**, i.e., there must be some element in there.
- X in a part of a set means that this part must be **empty**, i.e., contains no element.
- **Important**: Do **NOT** put anything in regions that are **not specified** as empty or occupied.

イロト 不同 トイヨト イヨト ヨー うらう

Visualizing Relationships between Sets

S3: All quixotic humans are pernicious, but not raffish.

- U denotes the set of all humans,
 - P denotes the set of pernicious humans,
 - Q denotes the set of quixotic humans, and
 - ${\cal R}$ denotes the set of raffish humans.
- $Q \subseteq P, Q \cap R = \emptyset$

Review: Sets and Predicates

Predicates

An *n*-ary predicate $L(x_1, ..., x_n)$ is a **boolean function** returning **True** or **False** such that

 $L(x_1, ..., x_n) =$ **True** iff $\langle x_1, ..., x_n \rangle$ satisfies the property that is denoted by L.

Important Notes about Predicates

- L(x) is **not a set**!
- In a logical statement, you cannot treat a symbol both as a set and a predicate symbol
 - Incorrect use of notation: $\forall x, y \in E, x \in L, L(y)$.
 - Correct version: $\forall x, y \in E, x \in L, y \in L \text{ or } \forall x, y \in E, L(x) \land L(y).$
- \bullet Don't apply set operations over predicates! $\mathbf{P}(\mathbf{x}) \cap \mathbf{Q}(\mathbf{y})$ makes no sense
- Don't apply logical symbols over sets! $\mathbf{x} \in \mathbf{S} \land \mathbf{x} \in \mathbf{R}$ makes no sense
- Don't nest predicates!
 P(Q(x)) makes no sense

Review: Logical Symbols, Translation between Logic and English

Evaluating Statements

 $\neg P$ is **True** iff *P* is **False**.

 $P \wedge Q$ is **True** iff both P and Q are **True**.

 $P \lor Q$ is **True** iff **at least** one of P or Q are **True**.

 $P \Rightarrow Q$ is **True** iff **at least** one of $\neg P$ or Q are **True**.

 $P \Leftrightarrow Q$ is **True** iff the **truth** values of P and Q are equal.

 $\forall x \in D, S(x)$ is **True** iff **all** elements of *D* satisfy the property denoted by *S*.

 $\exists x \in D, S(x)$ is **True** iff **at least one** element of *D* satisfies the property denoted by *S*.

イロト イロト イヨト イヨト 三日

Logical Notation and English

Order of Quantifiers matter!

- $\exists x \in Men, \forall y \in Women, wife(y, x)$
- All men have wives.

2 There exists a man such that all women are his wives!

Expressing Uniqueness

- All men have **exactly one** wife. All men have at least one wife, **and**, All men have at most one wife.
- $\bullet \ \forall x \in Men, \exists y \in Women, wife(y,x) \land \forall z \in Women, wife(z,x) \Rightarrow z = y$

Expressing Equality

- There are at least two **different** students who passed the **same** courses.
- $\exists x \in S, \exists y \in S, \forall c \in C, (x \neq y) \land (pass(x, c) \Leftrightarrow pass(y, c))$

Review: Logical Grammar and Arithmetic

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Well-Formed Formulas

Well-Formed Formulas (wff)

- Any predicate is a wff.
- If P is a wff, so is $\neg P$.
- If P and Q are wffs, so is $(P \land Q)$.
- If P and Q are wffs, so is $(P \lor Q)$.
- If P and Q are wffs, so is $(P \Rightarrow Q)$.
- If P and Q are wffs, so is $(P \Leftrightarrow Q)$.
- If P is a wff (possibly open in variable x) and D is a set, then $(\forall x \in D, P)$ is a wff.
- If P is a wff (possibly open in variable x) and D is a set, then $(\exists x \in D, P)$ is a wff.
- Nothing else is a wff.

Precedence decreases from top to bottom.

Logical Arithmetic

Commutative

- $P \land Q \Leftrightarrow Q \land P$
- $P \lor Q \Leftrightarrow Q \lor P$

Associative

- $P \land (Q \land R) \Leftrightarrow (P \land Q) \land R$
- $P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

Distributive

- $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$
- $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Identity

•
$$P \land (Q \lor \neg Q) \Leftrightarrow P \Leftrightarrow P \lor (Q \land \neg Q)$$

Idempotency

•
$$P \land P \Leftrightarrow P \Leftrightarrow P \lor P$$

Review: Truth Tables

Truth Tables

In a **truth table**, we write **all** possible truth values for the **predicates** in a statement and compute the truth value of the statement under **each** of these truth assignments.

Truth Tables for Logical Symbols											
	P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$			
	Т	Т	F	F	Т	Т	Т	Т			
	Т	F	F	Т	F	Т	F	F			
	\mathbf{F}	Т	Т	F	F	Т	Т	F			
	\mathbf{F}	F	Т	Т	F	F	Т	Т			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Evaluate S_1

$$\begin{split} \mathbf{S_1} &: (\neg P \Rightarrow (\neg Q \Rightarrow \neg R)) \Leftrightarrow (R \Rightarrow (P \lor Q)) \\ \mathbf{S_2} &: \neg P \Rightarrow (\neg Q \Rightarrow \neg R) \\ \mathbf{S_3} &: R \Rightarrow (P \lor Q) \end{split}$$

P	Q	R	$\neg P$	$\neg Q$	$\neg R$	$\neg Q \Rightarrow \neg R$	S_2	$P \lor Q$	S_3	$\mathbf{S_1}$
Т	Т	Т	F	F	F	Т	Т	Т	Т	Т
Т	Т	F	F	\mathbf{F}	Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F	F	Т	Т	Т	Т
Т	F	\mathbf{F}	F	Т	Т	Т	Т	Т	Т	Т
\mathbf{F}	Т	Т	Т	F	\mathbf{F}	Т	Т	Т	Т	Т
\mathbf{F}	Т	\mathbf{F}	Т	F	Т	Т	Т	Т	Т	Т
\mathbf{F}	F	Т	Т	Т	\mathbf{F}	F	\mathbf{F}	F	F	Т
\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	Т	Т	Т	Т	F	Т	Т

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへ⊙

Review: Application of Manipulation Rules

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Application of Manipulation Rules

① Use manipulation Rules to show that $(P \lor Q) \land (P \lor \neg Q)$ is equal to P

② Use manipulation Rules to show that the following statement is a tautology $((P \land Q) \Rightarrow R) \Rightarrow (P \Rightarrow (Q \Rightarrow R))$

$$\begin{array}{lll} ((P \land Q) \Rightarrow R) \Rightarrow (P \Rightarrow (Q \Rightarrow R)) & \Leftrightarrow & \neg(\neg(P \land Q) \lor R) \lor (\neg P \lor (\neg Q \lor R)) \# \text{ implication} \\ & \Leftrightarrow & \neg((\neg P \lor \neg Q) \lor R) \lor (\neg P \lor (\neg Q \lor R)) \# \text{ DeMorgan's} \\ & \Leftrightarrow & \neg((\neg P \lor \neg Q) \lor R) \lor ((\neg P \lor \neg Q) \lor R) \# \text{ Associative} \\ & \Leftrightarrow & \mathbf{True} & \# \text{ Definition of } \lor \end{array}$$

イロト 不同 トイヨト イヨト ヨー うらつ