Chapter 3
 Formal Proofs

Bahar Aameri
Department of Computer Science
University of Toronto

Jan 30, 2015

Announcements

- Assignment 1 is due Today, before midnight.
- Term Test 1:
- Section L0101: Tuesday Feb 03, 2:10-3:30 Location: MP203
- Section L0201: Thursday Feb 05, 2:10-3:30 Location: MP103
- You must write the quiz in the section that you are enrolled in, unless you have talked to the instructors and they allowed you to switch.
- Content: Chapter 2. Review lecture and course notes!
- TA office Hours:
- Monday, Feb 02, 1-3pm, 4:30-6:30pm in BA3201
- Wednesday, Feb 04, 12-2pm, 3:30-5:30pm in BA3201

Today's Topics

- Review: Proof by Contradiction

Chapter 3 Formal Proofs

Review: Proof by Contradiction

Proof by Contradiction

Solving a Murder Case

- Mr. Holmes has asked his trusty companion Dr. Watson to assist him in solving a murder case.
- Holmes's main suspect is Jack the Ripper.

Dr. Watson has gathered some facts about the murder, and wants to impress Holmes by solving the case.
However, he can not derive any conclusion by himself. So he has asked YOU for help.

Here's what he has so far:

- The victim was shot by a gun.
- Jack the Ripper never uses a gun on his victims.
- What's you expert opinion for Dr. Watson?

Jack the Ripper is not the murderer!
You should give a concrete argument that convinces Mr. Holmes!

Proof by Contradiction

Given P Prove Q

(1) Assume $\neg Q$.
(2) Use $\neg Q$ to show $\neg P$.

It means, $\neg Q \Rightarrow \neg P$ is True.
(3) P is a given fact.
(1) P and $\neg P$ cannot both be True! So $\neg P$ must be False.
(6) $\neg P$ is False and $\neg Q \Rightarrow \neg P$ is True.

So $\neg Q$ is False and therefore Q is True.

General Structure

Assume $\neg Q . \quad \#$ in order to derive a contradiction \vdots \# some steps leading to a contradiction, say $\neg P$
Then $\neg P$. \# contradiction, since P is known to be true Then Q. \# since assuming $\neg Q$ leads to a contradiction

Proof by Contradiction

Solving a Murder Case

- Use the structure for proof by contradiction to convince Mr. Holmes.
- The victim was shot by a gun. \rightarrow Fact
- Jack the Ripper never uses a gun on his victims. \rightarrow Fact
- What's you expert opinion for Dr. Watson? Jack the Ripper is not the murderer! $\quad \rightarrow$ Conclusion

Proof by Contradiction

Solving a Murder Case

- P_{1} : The victim was shot by a gun.
- P_{2} : Jack the Ripper never uses a gun on his victims.
- Q : Jack the Ripper is not the murderer.

Proof:

Assume Jack the Ripper is the murderer. \# to derive a contradiction Then the Ripper must have used a gun. \# because of P_{1} Then the Ripper used a gun on one of his victims. \# By the previous step ($\neg P_{2}$)
Then Jack the Ripper is not the murderer. \# assuming $\neg Q$ leads to a contradiction as P_{2} is known to be true

Proof by Contradiction

Exercise

- P_{1} : There are 10 pigeonholes.
- P_{2} : There are 11 pigeons in the holes in total.
- Q : Prove that at least two pigeons share a hole.

Proof:

Assume there is at most one pigeon in all holes. \# negation of Q
Then there are at most 10 pigeons. $\# 10 \times 1=10\left(\neg P_{2}\right)$
Then at least two pigeons share a hole. \# since assuming $\neg Q$ leads to a contradiction

Proof by Contradiction

Exercise: The Pigeonhole Principle

- If n items are put into m containers, with $n>m$, then at least one container must contain more than one item.

Proof:

Assume there is at most one item in all containers. \# negation of the conclusion

Then there are at most m items. $\# m \times 1=m$ (negation of the assumptions)
Then at least one container must contain more than one item. \# since assuming the negation of the conclusion leads to a contradiction

Proof by Contradiction

Exercise

- Prove that there are infinitely many even natural numbers.

Proof:

Assume there are a finite number of even numbers. \# negation of the conclusion

Then there exists a largest even number $n \in \mathbb{N}$. \# By the previous step
Let $n^{\prime}=2 n$. Then n^{\prime} is an even number, and $n^{\prime}>n \quad \#$ (contradiction, since n is the largest even number)
Then there are infinitely many even numbers. \# since assuming the negation of the conclusion leads to a contradiction

