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Announcements

NEXT MONDAY REVIEWING SESSION:

Piazza forum: vote for the troublesome topic(s) in Logical Notation;

DUE DATE: This Friday before midnight on Piazza.

MORNING Section: https://piazza.com/class/i4f701lgr0m75p?cid=56

AFTERNOON Section: https://piazza.com/class/i4f701lgr0m75p?cid=57

TOPICS:

Logical Grammar, Venn Diagram, Predicates, Equivalence

Conjunction, Disjunction, Negation, Quantifiers

Truth Tables

Implication, Logical Arithmetic

Manipulation Rules

Lisa Yan (University of Toronto) Mathematical Expression and Reasoning January 21, 2015 2 / 19



Today’s Topics

APPLICATION OF NEGATION TO LOGICAL SENTENCES

LOGICAL ARITHMETIC

MANIPULATION RULES
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Implication rule

P ⇒Q means: Every P is a Q

P Q P ⇒ Q
T T T
T F F
F T T
F F T

Evaluate S1: implication rule

S1 : (P ⇒ Q)⇔ (¬P ∨Q)
P Q P ⇒ Q ¬P ¬P ∨Q S1

T T T F T T
T F F F F T
F T T T T T
F F T T T T
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Exercise #1

Use TRUTH TABLES to evaluate the following claims. Indicate which one is a
TAUTOLOGY, which one is SATISFIABLE and which one is UNSATISFIABLE.

1 P ⇒ Q is equivalent to its contrapositive.
T

2 P ⇒ Q is equivalent to its converse.
S

3 P ⇔ Q is equivalent to (P ⇒ Q) ∧ (Q ⇒ P ).
T

4 P ∧ ¬P .
U

5 P ∨ ¬P .
T
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CHAPTER 2: LOGICAL NOTATION

APPLICATION OF NEGATION TO LOGICAL SENTENCES
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Negation

Negation of a Sentence

The negation of a sentence inverts its TRUTH VALUE.
The negation of a sentence P is written as ¬P ,
¬P is TRUE if P was FALSE, ¬P is FALSE if P was TRUE.
¬¬P is equal with P .

Example:

Claim: All employees making over 80,000 are female.
The negation is: Not all employees making over 80,000 are female.
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Negation over Conjunction and Disjunction: DeMorgan’s Law

¬(S1 ∧ S2)⇔ (¬S1 ∨ ¬S2)
Sentence S1 ∧ S2 is FALSE exactly when at least one of S1 or S2 is FALSE.
¬(S1 ∨ S2)⇔ (¬S1 ∧ ¬S2)
Sentence S1 ∨ S2 is FALSE exactly when both S1 and S2 are FALSE.

Exercise:

Recall that
(P ⇒ Q)⇔ (¬P ∨Q).
(P ⇔ Q)⇔ ((P ⇒ Q) ∧ (Q⇒ P ))

Now use DeMorgan’s law to simplify the following sentences so that only P and Q are
negated.

1 ¬(P ⇒ Q).
2 ¬(P ⇔ Q)

Lisa Yan (University of Toronto) Mathematical Expression and Reasoning January 21, 2015 8 / 19



Negation over Conjunction and Disjunction

Solution:

1

¬ (P ⇒ Q) ⇔ ¬ (¬P ∨Q)

⇔ (¬¬P ∧ ¬Q)

⇔ (P ∧ ¬Q)
2

¬ (P ⇔ Q) ⇔ ¬ ((P ⇒ Q) ∧ (Q⇒ P ))

⇔ (¬ (P ⇒ Q) ∨ ¬ (Q⇒ P ))

⇔ ((P ∧ ¬Q) ∨ (Q ∧ ¬P ))
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Negation

Negation over Quantifiers

Example 1:

¬(∀x ∈ D,∃y ∈ D,P (x, y))⇔∃x ∈ D,¬(∃y ∈ D,P (x, y))
∃x ∈ D,¬(∃y ∈ D,P (x, y))⇔∃x ∈ D,∀y ∈ D,¬P (x, y)

Example 2:

¬(∃x ∈ D,∀y ∈ D,P (x, y))⇔∀x ∈ D,¬(∀y ∈ D,P (x, y))
¬(∃x ∈ D,∀y ∈ D,P (x, y))⇔∀x ∈ D,∃y ∈ D,¬P (x, y)

Example 3:

¬(∃x ∈ D,∀y ∈ D, (P (x, y)⇒Q(x, y)))⇔¬(∃x ∈ D,∀y ∈ D, (¬P (x, y) ∨Q(x, y)))
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CHAPTER 2: LOGICAL NOTATION

LOGICAL ARITHMETIC
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Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:
1 ¬
2 ∧
3 ∨
4 ⇒
5 ⇔
6 ∀
7 ∃

Arithmetic Rules

1 Commutative
2 Associative
3 Distributive
4 Identity
5 Idempotency
6 DeMorgan’s Law
7 etc.

These rules can be verified by a truth table.
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Logical Arithmetic

Commutative

P ∧Q⇔Q ∧ P and P ∨Q⇔Q ∨ P

Associative

P ∧ (Q ∧R)⇔ (P ∧Q) ∧R and P ∨ (Q ∨R)⇔ (P ∨Q) ∨R

Distributive

P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R) and P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R)

Identity

P ∧ (Q ∨ ¬Q)⇔ P ⇔ P ∨ (Q ∧ ¬Q)

Idempotency

P ∧ P ⇔ P ⇔ P ∨ P
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Logical Arithmetic: implication, bi-implication, with ¬,∨, and ∧

Implication: P ⇒Q⇔¬P ∨Q

Negate implication (use DeMorgan’s law):
¬(P ⇒Q)⇔¬(¬P ∨Q)⇔ (¬¬P ∧ ¬Q)⇔ (P ∧ ¬Q)

Bi-implication: P ⇔Q

Written with ∧, ∨, and ¬:
(P ⇔Q)⇔ ((¬P ∨Q) ∧ (¬Q ∨ P ))⇔ ((P ∧Q) ∨ (¬P ∧ ¬Q))

Negate bi-implication (use DeMorgan’s law):
¬(P ⇔Q)⇔¬((P ∧Q) ∨ (¬P ∧ ¬Q))⇔ · · · ⇔ ((¬P ∧Q) ∨ (P ∧ ¬Q))
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Transitivity of Universally-quantified Implication

((P (x)⇒Q(x)) ∧ (Q(x)⇒R(x)))⇒ (P (x)⇒R(x))

∀x ∈ D, (P (x)⇒ (Q(x)⇒R(x)))⇔∀x ∈ D, ((P (x) ∧Q(x))⇒R(x))
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Mixed Multiple Quantifiers

“Everybody has somebody who respects him/her.”
...

“y is respected by somebody”

∃x ∈ P, r(x, y)
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Mixed Multiple Quantifiers

“y is respected by somebody”

∃x ∈ P, r(x, y)

“Everybody has somebody who respects him/her.”

∀y ∈ P,∃x ∈ P, r(x, y)

Lisa Yan (University of Toronto) Mathematical Expression and Reasoning January 21, 2015 17 / 19



Summary of manipulation rules - 1

The following is a summary of the basic laws and rules we use for manipulating formal
statements.

identity laws P ∧ (Q ∨ ¬Q) ⇐⇒ P
P ∨ (Q ∧ ¬Q) ⇐⇒ P

idempotency laws P ∧ P ⇐⇒ P
P ∨ P ⇐⇒ P

commutative laws P ∧Q ⇐⇒ Q ∧ P
P ∨Q ⇐⇒ Q ∨ P

(P ⇔Q) ⇐⇒ (Q⇔ P )

associative laws (P ∧Q) ∧R ⇐⇒ P ∧ (Q ∧R)
(P ∨Q) ∨R ⇐⇒ P ∨ (Q ∨R)

distributive laws P ∧ (Q ∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R)
P ∨ (Q ∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R)

contrapositive P ⇒Q ⇐⇒ ¬Q⇒¬P
implication P ⇒Q ⇐⇒ ¬P ∨Q

equivalence (P ⇔Q) ⇐⇒ (P ⇒Q) ∧ (Q⇒ P )
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Summary of manipulation rules - 2

double negation ¬(¬P ) ⇐⇒ P

DeMorgan’s laws ¬(P ∧Q) ⇐⇒ ¬P ∨ ¬Q
¬(P ∨Q) ⇐⇒ ¬P ∧ ¬Q

implication negation ¬(P ⇒Q) ⇐⇒ P ∧ ¬Q
equivalence negation ¬(P ⇔Q) ⇐⇒ ¬(P ⇒Q) ∨ ¬(Q⇒ P )

quantifier negation ¬(∀x ∈ D,P (x)) ⇐⇒ ∃x ∈ D,¬P (x)
¬(∃x ∈ D,P (x)) ⇐⇒ ∀x ∈ D,¬P (x)

quantifier distributive laws ∀x ∈ D,P (x) ∧Q(x) ⇐⇒ (∀x ∈ D,P (x)) ∧ (∀x ∈ D,Q(x))
(where R does not contain variable x) ∃x ∈ D,P (x) ∨Q(x) ⇐⇒ (∃x ∈ D,P (x)) ∨ (∃x ∈ D,Q(x))

∀x ∈ D,R ∧Q(x) ⇐⇒ R ∧ (∀x ∈ D,Q(x))
∀x ∈ D,R ∨Q(x) ⇐⇒ R ∨ (∀x ∈ D,Q(x))
∃x ∈ D,R ∨Q(x) ⇐⇒ R ∨ (∃x ∈ D,Q(x))
∃x ∈ D,R ∧Q(x) ⇐⇒ R ∧ (∃x ∈ D,Q(x))

variable renaming ∀x ∈ D,P (x) ⇐⇒ ∀y ∈ D,P (y)
(where y does not appear in P (x)) ∃x ∈ D,P (x) ⇐⇒ ∃y ∈ D,P (y)
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