CSC165 Mathematical Expression and Reasoning for Computer Science

Lisa Yan

Department of Computer Science
University of Toronto

January 21, 2015

Announcements

- Next Monday Reviewing Session:
- Piazza forum: vote for the troublesome topic(s) in Logical Notation;
- Due date: This Friday before midnight on Piazza.
- MORNING Section: https://piazza.com/class/i4f701Igr0m75p?cid=56
- AFTERNOON Section: https://piazza.com/class/i4f701lgr0m75p?cid=57
- TOPICS:
- Logical Grammar, Venn Diagram, Predicates, Equivalence
- Conjunction, Disjunction, Negation, Quantifiers
- Truth Tables
- Implication, Logical Arithmetic
- Manipulation Rules

Today's Topics

- Application of Negation to Logical Sentences
- Logical Arithmetic
- Manipulation Rules

Implication rule

```
P=>Q means: Every P is a Q
```


Implication rule

$P \Rightarrow Q$ means: Every P is a Q

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Evaluate S_{1} : implication rule

$$
\mathbf{S}_{\mathbf{1}}:(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)
$$

Implication rule

$P \Rightarrow Q$ means: Every P is a Q

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Evaluate S_{1} : implication rule

Exercise \#1

- Use TRUTH TABLES to evaluate the following claims. Indicate which one is a TAUTOLOGY, which one is SATISFIABLE and which one is UNSATISFIABLE.
(1) $P \Rightarrow Q$ is equivalent to its contrapositive.

T
(2) $P \Rightarrow Q$ is equivalent to its converse.
(3) $P \Leftrightarrow Q$ is equivalent to $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$.

T
(4) $P \wedge \neg P$.

U
(5) $P \vee \neg P$.

T

Chapter 2: LOGical Notation

 Application of Negation to Logical Sentences
Negation

Negation of a Sentence

- The negation of a sentence inverts its truth value.
- The negation of a sentence P is written as $\neg P$,
- $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\neg \neg P$ is equal with P.

Negation

Negation of a Sentence

- The negation of a sentence inverts its TRUTH VALUE.
- The negation of a sentence P is written as $\neg P$,
- $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\neg \neg P$ is equal with P.

Example:

Claim: All employees making over 80,000 are female.
The negation is: Not all employees making over 80,000 are female.

Negation over Conjunction and Disjunction: DeMorgan's Law

- $\neg\left(S_{1} \wedge S_{2}\right) \Leftrightarrow\left(\neg S_{1} \vee \neg S_{2}\right)$

Sentence $S_{1} \wedge S_{2}$ is FALSE exactly when at least one of S_{1} or S_{2} is FALSE.

- $\neg\left(S_{1} \vee S_{2}\right) \Leftrightarrow\left(\neg S_{1} \wedge \neg S_{2}\right)$

Sentence $S_{1} \vee S_{2}$ is FALSE exactly when both S_{1} and S_{2} are FALSE.

Exercise:

Recall that

- $(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)$.
- $(P \Leftrightarrow Q) \Leftrightarrow((P \Rightarrow Q) \wedge(Q \Rightarrow P))$

Now use DeMorgan's law to simplify the following sentences so that only P and Q are negated.
(1) $\neg(P \Rightarrow Q)$.
(2) $\neg(P \Leftrightarrow Q)$

Negation over Conjunction and Disjunction

Solution:

©

$$
\begin{aligned}
\neg(P \Rightarrow Q) & \Leftrightarrow \quad \neg(\neg P \vee Q) \\
& \Leftrightarrow(\neg \neg P \wedge \neg Q) \\
& \Leftrightarrow \quad(P \wedge \neg Q)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\neg(P \Leftrightarrow Q) & \Leftrightarrow \quad \neg((P \Rightarrow Q) \wedge(Q \Rightarrow P)) \\
& \Leftrightarrow(\neg(P \Rightarrow Q) \vee \neg(Q \Rightarrow P)) \\
& \Leftrightarrow((P \wedge \neg Q) \vee(Q \wedge \neg P))
\end{aligned}
$$

Negation

Negation over Quantifiers

Example 1:

$\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow \exists x \in D, \neg(\exists y \in D, P(x, y))$
$\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow \exists x \in D, \forall y \in D, \neg P(x, y)$

Example 2:

$\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \neg(\forall y \in D, P(x, y))$
$\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \exists y \in D, \neg P(x, y)$

Example 3:

$$
\neg(\exists x \in D, \forall y \in D,(P(x, y) \Rightarrow Q(x, y))) \Leftrightarrow \neg(\exists x \in D, \forall y \in D,(\neg P(x, y) \vee Q(x, y)))
$$

Chapter 2: Logical Notation

LOGICAL ARITHMETIC

Logical Arithmetic

Precedence Rules

Precedence decreases from top to bоttom:
(1) ᄀ
(2) \wedge
(3) \vee
(4) \Rightarrow
(5) \Leftrightarrow
(6) \forall
(\exists

Logical Arithmetic

```
Precedence Rules
Precedence DECREASES from TOP TO BOTTOM:
(1) ᄀ
(2)}
(3)}
(4)}
(5)}
(6)}
0}
```


Arithmetic Rules

(1) Commutative
(2) Associative
(3) Distributive
(4) Identity
(5) Idempotency
(6) DeMorgan's Law
(7) etc.

These rules can be verified by a truth table.

Logical Arithmetic

Commutative

$$
P \wedge Q \Leftrightarrow Q \wedge P \quad \text { and } \quad P \vee Q \Leftrightarrow Q \vee P
$$

Logical Arithmetic

Commutative

$P \wedge Q \Leftrightarrow Q \wedge P \quad$ and $\quad P \vee Q \Leftrightarrow Q \vee P$

Associative

$P \wedge(Q \wedge R) \Leftrightarrow(P \wedge Q) \wedge R$ and $P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R$

Distributive

$$
P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R) \text { and } P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R)
$$

Logical Arithmetic

Commutative

$P \wedge Q \Leftrightarrow Q \wedge P \quad$ and $\quad P \vee Q \Leftrightarrow Q \vee P$

Associative

$$
P \wedge(Q \wedge R) \Leftrightarrow(P \wedge Q) \wedge R \quad \text { and } \quad P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R
$$

Distributive

```
P\wedge(Q\veeR)\Leftrightarrow(P\wedgeQ)\vee(P\wedgeR) and }P\vee(Q\wedgeR)\Leftrightarrow(P\veeQ)\wedge(P\veeR
```

Identity
$P \wedge(Q \vee \neg Q) \Leftrightarrow P \Leftrightarrow P \vee(Q \wedge \neg Q)$

Idempotency

$$
P \wedge P \Leftrightarrow P \Leftrightarrow P \vee P
$$

Logical Arithmetic: implication, bi-implication, with \neg, \vee, and \wedge

Implication: $P \Rightarrow Q \Leftrightarrow \neg P \vee Q$

Negate implication (use DeMorgan's law):

$$
\neg(P \Rightarrow Q) \Leftrightarrow \neg(\neg P \vee Q) \Leftrightarrow(\neg \neg P \wedge \neg Q) \Leftrightarrow(P \wedge \neg Q)
$$

Bi-implication: $P \Leftrightarrow Q$
Written with \wedge, \vee, and \neg :

$$
(P \Leftrightarrow Q) \Leftrightarrow((\neg P \vee Q) \wedge(\neg Q \vee P)) \Leftrightarrow((P \wedge Q) \vee(\neg P \wedge \neg Q))
$$

Negate bi-implication (use DeMorgan's law):

$$
\neg(P \Leftrightarrow Q) \Leftrightarrow \neg((P \wedge Q) \vee(\neg P \wedge \neg Q)) \Leftrightarrow \cdots \Leftrightarrow((\neg P \wedge Q) \vee(P \wedge \neg Q))
$$

Transitivity of Universally-quantified Implication

$$
((P(x) \Rightarrow Q(x)) \wedge(Q(x) \Rightarrow R(x))) \Rightarrow(P(x) \Rightarrow R(x))
$$

$$
\forall x \in D,(P(x) \Rightarrow(Q(x) \Rightarrow R(x))) \Leftrightarrow \forall x \in D,((P(x) \wedge Q(x)) \Rightarrow R(x))
$$

Mixed Multiple Quantifiers

"Everybody has somebody who respects him/her."
...

Mixed Multiple Quantifiers

"Everybody has somebody who respects him/her."
...
" y is respected by somebody"
$\exists x \in P, r(x, y)$

Mixed Multiple Quantifiers

```
" }y\mathrm{ is respected by somebody"
\existsx\inP,r(x,y)
```

"Everybody has somebody who respects him/her."
$\forall y \in P, \exists x \in P, r(x, y)$

Summary of manipulation rules - 1

The following is a summary of the basic laws and rules we use for manipulating formal statements.

identity laws	$\begin{aligned} & P \wedge(Q \vee \neg Q) \Longleftrightarrow P \\ & P \vee(Q \wedge \neg Q) \Longleftrightarrow P \end{aligned}$
idempotency laws	$P \wedge P \Longleftrightarrow P$
	$P \vee P \Longleftrightarrow P$
commutative laws	$P \wedge Q \Longleftrightarrow Q \wedge P$
	$P \vee Q \Longleftrightarrow Q \vee P$
	$(P \Leftrightarrow Q) \Longleftrightarrow(Q \Leftrightarrow P)$
associative laws	$(P \wedge Q) \wedge R \Longleftrightarrow P \wedge(Q \wedge R)$
	$(P \vee Q) \vee R \Longleftrightarrow P \vee(Q \vee R)$
distributive laws	$P \wedge(Q \vee R) \Longleftrightarrow(P \wedge Q) \vee(P \wedge R)$
	$P \vee(Q \wedge R) \Longleftrightarrow(P \vee Q) \wedge(P \vee R)$
contrapositive	$P \Rightarrow Q \Longleftrightarrow \neg Q \Rightarrow \neg P$
implication	$P \Rightarrow Q \Longleftrightarrow \neg P \vee Q$
equivalence	$(P \Leftrightarrow Q) \Longleftrightarrow(P \Rightarrow Q) \wedge(Q \Rightarrow P)$

Summary of manipulation rules - 2

double negation
DeMorgan's laws
implication negation equivalence negation
quantifier negation
quantifier distributive laws (where R does not contain variable x)
variable renaming (where y does not appear in $P(x)$)

$$
\begin{aligned}
\neg(\neg P) & \Longleftrightarrow P \\
\neg(P \wedge Q) & \Longleftrightarrow \neg P \vee \neg Q \\
\neg(P \vee Q) & \Longleftrightarrow \neg P \wedge \neg Q \\
\neg(P \Rightarrow Q) & \Longleftrightarrow P \wedge \neg Q \\
\neg(P \Leftrightarrow Q) & \Longleftrightarrow \neg(P \Rightarrow Q) \vee \neg(Q \Rightarrow P) \\
\neg(\forall x \in D, P(x)) & \Longleftrightarrow \exists x \in D, \neg P(x) \\
\neg(\exists x \in D, P(x)) & \Longleftrightarrow \forall x \in D, \neg P(x) \\
\forall x \in D, P(x) \wedge Q(x) & \Longleftrightarrow(\forall x \in D, P(x)) \wedge(\forall x \in D, \\
\exists x \in D, P(x) \vee Q(x) & \Longleftrightarrow(\exists x \in D, P(x)) \vee(\exists x \in D, \\
\forall x \in D, R \wedge Q(x) & \Longleftrightarrow R \wedge(\forall x \in D, Q(x)) \\
\forall x \in D, R \vee Q(x) & \Longleftrightarrow R \vee(\forall x \in D, Q(x)) \\
\exists x \in D, R \vee Q(x) & \Longleftrightarrow R \vee(\exists x \in D, Q(x)) \\
\exists x \in D, R \wedge Q(x) & \Longleftrightarrow R \wedge(\exists x \in D, Q(x)) \\
\forall x \in D, P(x) & \Longleftrightarrow \forall y \in D, P(y) \\
\exists x \in D, P(x) & \Longleftrightarrow \exists y \in D, P(y)
\end{aligned}
$$

