Chapter 2
 Logical Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Jan 19, 2015

Announcements

- Assignment 1:
- Assignment 1 is posted on the course web page.
- Due date: Jan 30, before midnight on MarkUs.
- You won't be able to log into MarkUs and submit the assignment before Jan 24.
- Assignments may be submitted in groups of up to two students. You may choose your group-mate from students in the other section.
- Submissions must be typed. $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ is strongly recommended.
- There are some useful links for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ on the web page.

Today's Topics

- Truth Tables, Tautology, Satisfiability, Unsatisfiability
- Application of Negation to Logical Sentences

Chapter 2
 Logical Notation

Truth Tables, Tautology, Satisfiability, Unsatisfiability

Truth Tables

- Logical statements evaluate either to True or False.
- It's not easy to evaluate complex statements:

$$
(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)
$$

Truth Tables

In a truth table, we write all possible truth values for the predicates in a statement and compute the truth value of the statement under each of these truth assignments.

- Question: if there are n predicates in a statement, how many rows do you need in a truth table to evaluate the statement? $2^{\text {n }}$

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	\mathbf{S}_{2}
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S}_{\mathbf{2}}$
T	\mathbf{T}	\mathbf{T}	\mathbf{T}				
T	\mathbf{T}	\mathbf{F}	\mathbf{F}				
T	\mathbf{F}	\mathbf{T}	\mathbf{T}				
T	\mathbf{F}	\mathbf{F}	\mathbf{T}				
F	\mathbf{T}	\mathbf{T}	\mathbf{T}				
F	\mathbf{T}	\mathbf{F}	\mathbf{F}				
F	\mathbf{F}	\mathbf{T}	\mathbf{T}				
F	\mathbf{F}	\mathbf{F}	\mathbf{T}				

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S}_{\mathbf{2}}$
\mathbf{T}	T	T	\mathbf{T}	\mathbf{T}			
\mathbf{T}	T	F	\mathbf{F}	\mathbf{F}			
\mathbf{T}	F	T	\mathbf{T}	\mathbf{T}			
\mathbf{T}	F	F	\mathbf{T}	\mathbf{T}			
\mathbf{F}	T	T	\mathbf{T}	\mathbf{T}			
\mathbf{F}	T	F	\mathbf{F}	\mathbf{T}			
\mathbf{F}	F	T	\mathbf{T}	\mathbf{T}			
\mathbf{F}	F	F	\mathbf{T}	\mathbf{T}			

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S}_{\mathbf{2}}$
\mathbf{T}	\mathbf{T}	T	T	T	\mathbf{T}		
\mathbf{T}	\mathbf{T}	F	F	F	\mathbf{T}		
\mathbf{T}	\mathbf{F}	T	T	T	\mathbf{F}		
\mathbf{T}	\mathbf{F}	F	T	T	\mathbf{F}		
\mathbf{F}	\mathbf{T}	T	T	T	\mathbf{F}		
\mathbf{F}	\mathbf{T}	F	F	T	\mathbf{F}		
\mathbf{F}	\mathbf{F}	T	T	T	\mathbf{F}		
\mathbf{F}	\mathbf{F}	F	T	T	\mathbf{F}		

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S}_{\mathbf{2}}$
T	T	\mathbf{T}	T	T	\mathbf{T}	\mathbf{T}	
T	T	\mathbf{F}	F	F	\mathbf{T}	\mathbf{F}	
T	F	\mathbf{T}	T	T	\mathbf{F}	\mathbf{T}	
T	F	\mathbf{F}	T	T	\mathbf{F}	\mathbf{T}	
F	T	\mathbf{T}	T	T	\mathbf{F}	\mathbf{T}	
F	T	\mathbf{F}	F	T	\mathbf{F}	\mathbf{T}	
F	F	\mathbf{T}	T	T	\mathbf{F}	\mathbf{T}	
F	F	\mathbf{F}	T	T	\mathbf{F}	\mathbf{T}	

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S}_{\mathbf{2}}$
T	T	T	T	\mathbf{T}	T	\mathbf{T}	\mathbf{T}
T	T	F	F	\mathbf{F}	T	\mathbf{F}	\mathbf{T}
T	F	T	T	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
T	F	F	T	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
F	T	T	T	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
F	T	F	F	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
F	F	T	T	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
F	F	F	T	\mathbf{T}	F	\mathbf{T}	\mathbf{T}

New Terms

Tautology
A tautology is a sentence that is always True in any domain.

Satisfiability

A statement is satisfiable if it is True in some domain.

Unsatisfiability (Contradiction)

A statement is unsatisfiable if it is always False in any domain domains.

Exercise

- Use truth tables to evaluate the following claims. Indicate which one is a tautology, which one is satisfiable and which one is unsatisfiable.
(1) $P \Rightarrow Q$ is equivalent to its contrapositive.
(2) $P \Rightarrow Q$ is equivalent to its converse.
(3) $P \Leftrightarrow Q$ is equivalent to $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$.
(1) $P \wedge \neg P$.
(6) $P \vee \neg P$.

Chapter 2
 Logical Notation

Application of Negation to Logical Sentences

Negation

Negation of a Sentence

- The negation of a sentence inverts its truth value.
- The negation of a sentence P is written as $\neg P$,
- $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\neg \neg P$ is equal to P. (why?)

Example:

Claim: All employees making over 80,000 are female.
The negation is: Not all employees making over 80,000 are female.

Negation over Conjunction and Disjunction

DeMorgan's Law

- Sentence $S_{1} \wedge S_{2}$ is False exactly when at least one of S_{1} or S_{2} is False.

$$
\neg\left(S_{1} \wedge S_{2}\right) \Leftrightarrow\left(\neg S_{1} \vee \neg S_{2}\right)
$$

- Sentence $S_{1} \vee S_{2}$ is False exactly when both S_{1} and S_{2} are False.

$$
\neg\left(S_{1} \vee S_{2}\right) \Leftrightarrow\left(\neg S_{1} \wedge \neg S_{2}\right)
$$

These laws can be verified either by a truth table, or by representing the sentences as Venn diagrams and taking the complement.

Negation over Conjunction and Disjunction

Exercise:

Recall that

- $(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)$.
- $(P \Leftrightarrow Q) \Leftrightarrow((P \Rightarrow Q) \wedge(Q \Rightarrow P))$

Now use DeMorgan's law to simplify the following sentences so that only P and Q are negated.

- $\neg(P \Rightarrow Q)$.
- $\neg(P \Leftrightarrow Q)$

