CSC165 Mathematical Expression and Reasoning for Computer Science

Lisa Yan

Department of Computer Science University of Toronto

January 19, 2015

Announcements

ASSIGNMENT 1:

- Assignment 1 is posted on the course web page.
- DUE DATE: Jan 30, before midnight on MarkUs.
- You WON'T be able to log into MarkUs and submit the assignment BEFORE JAN 24.
- Assignments may be submitted in groups of up to TWO students. You may choose your group-mate from students in the other section.
- Submissions must be TYPED. LATEX is strongly recommended.
- There are some useful links for LATEX on the web page.

Today's Topics

- TRUTH TABLES, TAUTOLOGY, SATISFIABILITY, UNSATISFIABILITY
- Application of Negation to Logical Sentences

LOGICAL ARITHMETIC

CHAPTER 2: LOGICAL NOTATION

TRUTH TABLES, TAUTOLOGY SATISFIABILITY, UNSATISFIABILITY

- Logical statements evaluate either to TRUE or FALSE.
- It's not easy to EVALUATE COMPLEX statements:

$$(P\Rightarrow (Q\Rightarrow R))\Leftrightarrow ((P\wedge Q)\Rightarrow R)$$

- Logical statements evaluate either to TRUE or FALSE.
- It's not easy to EVALUATE COMPLEX statements:

$$(P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

Truth Tables

In a TRUTH TABLE, we write ALL possible truth values for the PREDICATES in a statement and compute the truth value of the statement under EACH of these truth assignments.

- Logical statements evaluate either to TRUE or FALSE.
- It's not easy to EVALUATE COMPLEX statements:

$$(P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

Truth Tables

In a TRUTH TABLE, we write ALL possible truth values for the PREDICATES in a statement and compute the truth value of the statement under EACH of these truth assignments.

• QUESTION: if there are n predicates in a statement, how many rows do you need in a truth table to evaluate the statement?

- Logical statements evaluate either to TRUE or FALSE.
- It's not easy to EVALUATE COMPLEX statements:

$$(P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

Truth Tables

In a TRUTH TABLE, we write ALL possible truth values for the PREDICATES in a statement and compute the truth value of the statement under EACH of these truth assignments.

QUESTION: if there are n predicates in a statement, how many rows do you need
in a truth table to evaluate the statement? 2n

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	T	Т
Т	F	F	Т	F	T	F	F
F	Т	Т	F	F	T	Т	F
F	F	Т	Т	F	F	Т	Т

6/25

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
						T	Т
Т	F	F	Т	F	Т Т	F	F
F	Т	T	F	F	T	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}:(P\Rightarrow (Q\Rightarrow R))\Leftrightarrow ((P\wedge Q)\Rightarrow R)$$

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}: (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	S_2
T	Т	Т					
Т	Т	F					
Т	F	Т					
Т	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	Т	Т
Τ	F	F	Т	F	T	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}: (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \wedge Q$	$(P \land Q) \Rightarrow R$	$\mathbf{S_2}$
Т	Т	Т	Т				
Т	Τ	F	F				
Т	F	Т	Т				
Т	F	F	Т				
F	Т	Т	Т				
F	Т	F	F				
F	F	Т	Т				
F	F	Ė	Ť				

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}: (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	S_2
T	Т	Т	Т	Т			
Т	Т	F	F	F			
Т	F	Τ	Т	Т			
Т	F	F	Т	Т			
F	Т	Т	Т	Т			
F	Т	F	F	Т			
F	F	Т	Т	Т			
F	F	F	Ť	Ť			

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	Т	Т
Τ	F	F	Т	F	T	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}: (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \wedge Q$	$(P \land Q) \Rightarrow R$	S_2
Т	Т	Т	Т	Т	Т		
Т	Т	F	F	F	T		
Τ	F	Т	Т	Т	F		
Τ	F	F	Т	Т	F		
F	Т	Т	Т	Т	F		
F	Т	F	F	Т	F		
F	F	Т	Т	Т	F		
F	F	F	Ť	Ť	F		

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	T	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	F	T	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}: (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S_2}$
Т	Т	Т	Т	Т	Т	Т	
Т	Т	F	F	F	T	F	
Т	F	Т	Т	Т	F	Т	
Т	F	F	Т	Т	F	Т	
F	Т	Т	Т	Т	F	Т	
F	Т	F	F	Т	F	Т	
F	F	Т	Т	Т	F	Т	
F	F	F	Т	Т	F	Т	

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	T	T	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	F	T	Т	F
F	F	Т	Т	F	F	Т	Т

$$\mathbf{S_2}: (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$\mathbf{S_2}$
Т	Т	Т	Т	Т	Т	Т	T
Т	Т	F	F	F	T	F	Т
Т	F	Т	T	T	F	T	Т
Т	F	F	T	T	F	T	Т
F	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т
F	F	F	Т	Т	F	Т	Т

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	T	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
				T		Т	Т
Т	F	F	Т	F	T	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

Evaluate S_1 : implication rule

$$\mathbf{S_1}: (P \Rightarrow Q) \Leftrightarrow (\neg P \vee Q)$$

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
						Т	Т
		F	Т	F	T	F	F
F	Τ	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

Evaluate S_1 : implication rule

$$\mathbf{S_1}: (P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$

4)					
P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \vee Q$	S_1
Т	Т	T	F	Т	T
Т	F	F	F	F	T
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

New Terms

Tautology

A TAUTOLOGY is a sentence that is ALWAYS TRUE in any domain.

Satisfiability

A statement is SATISFIABLE if it is TRUE IN SOME domain / if it is possible to find an interpretation (model) that makes the statement true.

Unsatisfiability (Contradiction)

A statement is ${\tt UNSATISFIABLE}$ if it is ALWAYS FALSE in any domain domains / if none of the interpretations make the statement true.

Exercise #1

- Use TRUTH TABLES to evaluate the following claims. Indicate which one is a TAUTOLOGY, which one is SATISFIABLE and which one is UNSATISFIABLE.
 - \bigcirc $P \Rightarrow Q$ is equivalent to its contrapositive.
 - 2 $P \Rightarrow Q$ is equivalent to its converse.

Chapter 2: Logical Notation Application of Negation to Logical Sentences

Negation

Negation of a Sentence

- The negation of a sentence inverts its TRUTH VALUE.
- The negation of a sentence P is written as $\neg P$,
- $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\neg \neg P$ is equal with P. (why?)

Negation

Negation of a Sentence

- The negation of a sentence inverts its TRUTH VALUE.
- The negation of a sentence P is written as $\neg P$,
- \bullet $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\bullet \neg \neg P$ is equal with P. (why?)

Example:

Claim: All employees making over 80,000 are female.

The negation is: Not all employees making over 80,000 are female.

DeMorgan's Law

• Sentence $S_1 \wedge S_2$ is False exactly when at least one of S_1 or S_2 is False.

$$\neg (S_1 \land S_2) \Leftrightarrow (\neg S_1 \lor \neg S_2)$$

• Sentence $S_1 \vee S_2$ is FALSE exactly when both S_1 and S_2 are FALSE.

$$\neg (S_1 \lor S_2) \Leftrightarrow (\neg S_1 \land \neg S_2)$$

These laws can be VERIFIED either by a truth table, or by representing the sentences as Venn diagrams and taking the complement.

Exercise:

Recall that

- $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$.
- $\bullet \ (P \Leftrightarrow Q) \Leftrightarrow ((P \Rightarrow Q) \land (Q \Rightarrow P))$

Now use DeMorgan's law to simplify the following sentences so that only ${\cal P}$ and ${\cal Q}$ are negated.

$$\neg (P \Rightarrow Q) \quad \Leftrightarrow \quad \neg (\neg P \lor Q)$$
$$\Leftrightarrow \quad (\neg \neg P \land \neg Q)$$
$$\Leftrightarrow \quad (P \land \neg Q)$$

$$\neg \left(P \Rightarrow Q \right) \quad \Leftrightarrow \quad \neg \left(\neg P \lor Q \right) \\ \quad \Leftrightarrow \quad \left(\neg \neg P \land \neg Q \right) \\ \quad \Leftrightarrow \quad \left(P \land \neg Q \right)$$

$$\begin{array}{lll} \neg \left(P \Leftrightarrow Q \right) & \Leftrightarrow & \neg \left(\left(P \Rightarrow Q \right) \wedge \left(Q \Rightarrow P \right) \right) \\ & \Leftrightarrow & \left(\neg \left(P \Rightarrow Q \right) \vee \neg \left(Q \Rightarrow P \right) \right) \\ & \Leftrightarrow & \left(\left(P \wedge \neg Q \right) \vee \left(Q \wedge \neg P \right) \right) \end{array}$$

Negation

Negation over Quantifiers:

As negation (\neg) moves from left to right, it flips universal quantification to existential quantification, and vice versa.

3:

$$\neg(\exists x \in D, P(x) \land Q(x)) \Leftrightarrow \forall x \in D, (P(x) \Rightarrow \neg Q(x)).$$

In words, "No P is a Q" is equivalent to "Every P is a non-Q."

Negation

Negation over Quantifiers:

As negation (\neg) moves from left to right, it flips universal quantification to existential quantification, and vice versa.

$$\neg(\exists x \in D, P(x) \land Q(x)) \Leftrightarrow \forall x \in D, (P(x) \Rightarrow \neg Q(x)).$$

In words, "No P is a Q" is equivalent to "Every P is a non-Q."

$$\neg(\forall x\in D, P(x)\Rightarrow Q(x))\Leftrightarrow \exists x\in D, (P(x)\wedge\neg Q(x)).$$

In words, "Not every P is a Q" is equivalent to "There is some P that is a non-Q."

Exercise:

Simplify the following sentences so that only ${\cal P}$ and ${\cal Q}$ are negated.

- $\exists x \in D, \neg (\exists y \in D, P(x, y)).$

Solutions:

- $\exists x \in D, \neg (\exists y \in D, P(x, y)) \Leftrightarrow$

- $\exists x \in D, \neg (\exists y \in D, P(x, y)) \Leftrightarrow (\exists x \in D, \forall y \in D, \neg P(x, y)).$

- $\exists x \in D, \neg (\exists y \in D, P(x,y)) \Leftrightarrow (\exists x \in D, \forall y \in D, \neg P(x,y)).$

- $\exists x \in D, \neg (\exists y \in D, P(x,y)) \Leftrightarrow (\exists x \in D, \forall y \in D, \neg P(x,y)).$

- $\exists x \in D, \neg (\exists y \in D, P(x,y)) \Leftrightarrow (\exists x \in D, \forall y \in D, \neg P(x,y)).$

- $\exists x \in D, \neg (\exists y \in D, P(x,y)) \Leftrightarrow (\exists x \in D, \forall y \in D, \neg P(x,y)).$

Negation

Negation over Quantifiers

Example 1:

$$\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow \exists x \in D, \neg(\exists y \in D, P(x, y))$$
$$\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow \exists x \in D, \forall y \in D, \neg P(x, y)$$

Example 2:

$$\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \neg(\forall y \in D, P(x, y))$$

$$\neg(\exists x \in D, \forall y \in D, P(x,y)) \Leftrightarrow \forall x \in D, \exists y \in D, \neg P(x,y)$$

Example 3:

$$\neg(\exists x \in D, \forall y \in D, (P(x,y) \Rightarrow Q(x,y))) \Leftrightarrow \neg(\exists x \in D, \forall y \in D, (\neg P(x,y) \vee Q(x,y)))$$

23 / 25

CHAPTER 2: LOGICAL NOTATION

LOGICAL ARITHMETIC

Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:

7

Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:

- 0
- **2** \
- 9
- **७** ⇒
- **5** ⇔
- 6 ∀
- **⊘** ∃

Commutative

 $P \wedge Q \Leftrightarrow Q \wedge P \quad \text{and} \quad P \vee Q \Leftrightarrow Q \vee P$

Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:

- 0
- 2 ^
- ·
- **3** ⇔
- 0 -
- **6** ∀
- **7** =

Commutative

 $P \wedge Q \Leftrightarrow Q \wedge P \quad \text{and} \quad P \vee Q \Leftrightarrow Q \vee P$

Associative

 $P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R \quad \text{and} \quad P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R$