CSC165 Mathematical Expression and Reasoning for Computer Science

Lisa Yan

Department of Computer Science
University of Toronto

January 19, 2015

Announcements

- Assignment 1:
- Assignment 1 is posted on the course web page.
- Due date: Jan 30, before midnight on MarkUs.
- You won't be able to log into MarkUs and submit the assignment before Jan 24.
- Assignments may be submitted in groups of up to Two students. You may choose your group-mate from students in the other section.
- Submissions must be TYPED. $\operatorname{LAT} \mathrm{E}_{\mathrm{X}}$ is strongly recommended.
- There are some useful links for ${ }^{[A T} T_{E} X$ on the web page.

Today's Topics

- Truth Tables, Tautology, Satisfiability, Unsatisfiability
- Application of Negation to Logical Sentences
- LOgical Arithmetic

Chapter 2: Logical Notation

TRUTH TABLES, TAUTOLOGY SATISFIABILITY, UNSATISFIABILITY

Truth Tables

- Logical statements evaluate either to True or False.
- It's not easy to EVALUATE COMPLEX statements:

$$
(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)
$$

Truth Tables

- Logical statements evaluate either to True or False.
- It's not easy to EVALUATE COMPLEX statements:

$$
(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)
$$

Truth Tables

In a TRUTH TABLE, we write ALL possible truth values for the PREDICATES in a statement and compute the truth value of the statement under EACH of these truth assignments.

Truth Tables

- Logical statements evaluate either to True or False.
- It's not easy to EVALUATE COMPLEX statements:

$$
(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)
$$

Truth Tables

In a TRUTH TABLE, we write ALL possible truth values for the PREDICATES in a statement and compute the truth value of the statement under EACH of these truth assignments.

- Question: if there are n predicates in a statement, how many rows do you need in a truth table to evaluate the statement?

Truth Tables

- Logical statements evaluate either to True or False.
- It's not easy to EVALUATE COMPLEX statements:

$$
(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)
$$

Truth Tables

In a TRUTH TABLE, we write ALL possible truth values for the PREDICATES in a statement and compute the truth value of the statement under EACH of these truth assignments.

- Question: if there are n predicates in a statement, how many rows do you need in a truth table to evaluate the statement? $2^{\text {n }}$

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R)$

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$$
\begin{array}{rl|l|ll|l}
\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R) \\
P & Q & R & Q \Rightarrow R & P \Rightarrow(Q \Rightarrow R) & P \wedge Q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & & & \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} & & & \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & & & \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} & & & \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} & & & \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~F} & & & \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T} & & & \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~F} & & & \\
\hline
\end{array}
$$

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

$$
\begin{array}{rl|l|l|ll|l}
\mathbf{S}_{\mathbf{2}}:(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R) \\
P & Q & R & Q \Rightarrow R & P \Rightarrow(Q \Rightarrow R) & P \wedge Q & (P \wedge Q) \Rightarrow R \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathbf{S}_{2} \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & & & \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & & & \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & & & \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & & & \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & & & \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & & & \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & & &
\end{array}
$$

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{2}

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{1} : implication rule

$$
\mathbf{S}_{\mathbf{1}}:(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)
$$

Truth Tables

Truth Tables for Logical Symbols

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	F
F	F	T	T	F	F	T	T

Evaluate S_{1} : implication rule

$$
\begin{array}{rl|c|cc|c}
\mathbf{S}_{\mathbf{1}}:(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q) & & & & \\
P & Q & P \Rightarrow Q & \neg P & \neg P \vee Q & \mathrm{~S}_{1} \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
& \mathrm{~T} & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

New Terms

Tautology

A tautology is a sentence that is Always True in any domain.

Satisfiability

A statement is SATISFIABLE if it is TRUE IN SOME domain / if it is possible to find an interpretation (model) that makes the statement true.

Unsatisfiability (Contradiction)

A statement is UNSATISFIABLE if it is ALWAYS FALSE in any domain domains / if none of the interpretations make the statement true.

Exercise \#1

- Use TRUTH TABLES to evaluate the following claims. Indicate which one is a TAUTOLOGY, which one is SATISFIABLE and which one is UNSATISFIABLE.
(1) $P \Rightarrow Q$ is equivalent to its contrapositive.
(2) $P \Rightarrow Q$ is equivalent to its converse.
(3) $P \Leftrightarrow Q$ is equivalent to $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$.
(4) $P \wedge \neg P$.
(5) $P \vee \neg P$.

Chapter 2: Logical Notation Application of Negation to Logical Sentences

Negation

Negation of a Sentence

- The negation of a sentence inverts its truth value.
- The negation of a sentence P is written as $\neg P$,
- $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\neg \neg P$ is equal with P. (why?)

Negation

Negation of a Sentence

- The negation of a sentence inverts its TRUTH VALUE.
- The negation of a sentence P is written as $\neg P$,
- $\neg P$ is True if P was False, $\neg P$ is False if P was True.
- $\neg \neg P$ is equal with P. (why?)

Example:

Claim: All employees making over 80,000 are female.
The negation is: Not all employees making over 80,000 are female.

Negation over Conjunction and Disjunction

DeMorgan's Law

- Sentence $S_{1} \wedge S_{2}$ is FALSE exactly when at least one of S_{1} or S_{2} is FALSE.

$$
\neg\left(S_{1} \wedge S_{2}\right) \Leftrightarrow\left(\neg S_{1} \vee \neg S_{2}\right)
$$

- Sentence $S_{1} \vee S_{2}$ is FALSE exactly when both S_{1} and S_{2} are FALSE.

$$
\neg\left(S_{1} \vee S_{2}\right) \Leftrightarrow\left(\neg S_{1} \wedge \neg S_{2}\right)
$$

These laws can be VERIFIED either by a truth table, or by representing the sentences as Venn diagrams and taking the complement.

Negation over Conjunction and Disjunction

Exercise:

Recall that

- $(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)$.
- $(P \Leftrightarrow Q) \Leftrightarrow((P \Rightarrow Q) \wedge(Q \Rightarrow P))$

Now use DeMorgan's law to simplify the following sentences so that only P and Q are negated.
(1) $\neg(P \Rightarrow Q)$.
(2) $\neg(P \Leftrightarrow Q)$

Negation over Conjunction and Disjunction

Solution:

(1)

$$
\begin{aligned}
\neg(P \Rightarrow Q) & \Leftrightarrow \quad \neg(\neg P \vee Q) \\
& \Leftrightarrow \quad(\neg \neg P \wedge \neg Q) \\
& \Leftrightarrow \quad(P \wedge \neg Q)
\end{aligned}
$$

Negation over Conjunction and Disjunction

Solution:

(9)

$$
\begin{aligned}
\neg(P \Rightarrow Q) & \Leftrightarrow \quad \neg(\neg P \vee Q) \\
& \Leftrightarrow \quad(\neg \neg P \wedge \neg Q) \\
& \Leftrightarrow \quad(P \wedge \neg Q)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\neg(P \Leftrightarrow Q) & \Leftrightarrow \quad \neg((P \Rightarrow Q) \wedge(Q \Rightarrow P)) \\
& \Leftrightarrow(\neg(P \Rightarrow Q) \vee \neg(Q \Rightarrow P)) \\
& \Leftrightarrow((P \wedge \neg Q) \vee(Q \wedge \neg P))
\end{aligned}
$$

Negation

Negation over Quantifiers:

As negation (\neg) moves from left to right, it flips universal quantification to existential quantification, and vice versa.

```
\exists:
\neg ( \exists x \in D , P ( x ) \wedge Q ( x ) ) \Leftrightarrow \forall x \in D , ( P ( x ) \Rightarrow \neg Q ( x ) ) .
In words, "No P is a Q" is equivalent to "Every P is a non-Q."
```


Negation

Negation over Quantifiers:

As negation (\neg) moves from left to right, it flips universal quantification to existential quantification, and vice versa.

ヨ:

$\neg(\exists x \in D, P(x) \wedge Q(x)) \Leftrightarrow \forall x \in D,(P(x) \Rightarrow \neg Q(x))$.
In words, "No P is a Q " is equivalent to "Every P is a non- Q."

\forall :

$\neg(\forall x \in D, P(x) \Rightarrow Q(x)) \Leftrightarrow \exists x \in D,(P(x) \wedge \neg Q(x))$.
In words, "Not every P is a Q " is equivalent to "There is some P that is a non- Q."

Negation over Quantifiers

Exercise:

Simplify the following sentences so that only P and Q are negated.

- $\neg(\forall x \in D, \exists y \in D, P(x, y))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y))$.
(3) $\neg(\exists x \in D, \forall y \in D, P(x, y))$.
(9) $\neg(\exists x \in D,(P(x) \Rightarrow Q(x)))$.

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow$

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow$

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D, \forall y \in D, \neg P(x, y))$.

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D, \forall y \in D, \neg P(x, y))$.
(3) $\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow$

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D, \forall y \in D, \neg P(x, y))$.
(8) $\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \exists y \in D, \neg P(x, y)$.

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D, \forall y \in D, \neg P(x, y))$.
(3) $\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \exists y \in D, \neg P(x, y)$.
(4) $\neg(\exists x \in D,(P(x) \Rightarrow Q(x))) \Leftrightarrow$

Negation over Quantifiers

Solutions:

(1) $\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D,(\forall y \in D, \neg P(x, y)))$.
(2) $\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow(\exists x \in D, \forall y \in D, \neg P(x, y))$.
(3) $\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \exists y \in D, \neg P(x, y)$.
(4) $\neg(\exists x \in D,(P(x) \Rightarrow Q(x))) \Leftrightarrow(\forall x \in D,(P(x) \wedge \neg Q(x)))$.

Negation

Negation over Quantifiers

Example 1:

$\neg(\forall x \in D, \exists y \in D, P(x, y)) \Leftrightarrow \exists x \in D, \neg(\exists y \in D, P(x, y))$
$\exists x \in D, \neg(\exists y \in D, P(x, y)) \Leftrightarrow \exists x \in D, \forall y \in D, \neg P(x, y)$

Example 2:

$\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \neg(\forall y \in D, P(x, y))$
$\neg(\exists x \in D, \forall y \in D, P(x, y)) \Leftrightarrow \forall x \in D, \exists y \in D, \neg P(x, y)$

Example 3:

$\neg(\exists x \in D, \forall y \in D,(P(x, y) \Rightarrow Q(x, y))) \Leftrightarrow \neg(\exists x \in D, \forall y \in D,(\neg P(x, y) \vee Q(x, y)))$

Chapter 2: Logical Notation LOGICAL ARITHMETIC

Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:
(1) ᄀ
(2) \wedge
(3) \vee
(4) \Rightarrow
(5) \Leftrightarrow
(6) \forall
© \exists

Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:
(1) ᄀ
(2) \wedge
(3) V
(4) \Rightarrow
(5) \Leftrightarrow
(6) \forall
(1) \exists

Commutative

$P \wedge Q \Leftrightarrow Q \wedge P \quad$ and $\quad P \vee Q \Leftrightarrow Q \vee P$

Logical Arithmetic

Precedence Rules

Precedence DECREASES from TOP TO BOTTOM:
(1) \neg
(2) \wedge
(3) \vee
(4) \Rightarrow
(5) \Leftrightarrow
(6) \forall
(1) \exists

Commutative

$P \wedge Q \Leftrightarrow Q \wedge P \quad$ and $\quad P \vee Q \Leftrightarrow Q \vee P$

Associative

$$
P \wedge(Q \wedge R) \Leftrightarrow(P \wedge Q) \wedge R \quad \text { and } \quad P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R
$$

