Chapter 3
 Formal Proofs

Bahar Aameri
Department of Computer Science
University of Toronto

Jan 23, 2015

Announcements

- Assignment 1 is due next Friday Jan 30, before midnight.
- TA office Hours for Assignment 1:
- Tuesday, Jan 27, 5-7pm in BA3201
- Thursday, Jan 29, 3:30-5:30pm in BA3201
- Monday: Review session for Chapter 2.
- Vote on the discussion board for topics that would like us to spend more time on.
- Next week tutorial exercises and quiz will only cover Chapter 2

Today's Topics

- What is a Proof?
- Direct Proof of Universally Quantified Implication
- Indirect Proof of Universally Quantified Implication

Motivation

Reminder from Chapter 1: Two Objectives of the Course

- Communicate precisely and concisely. \rightarrow Chapter 2
- Make convincing arguments, aka Proofs. \rightarrow Chapter 3

Chapter 3
 Formal Proofs

What is a Proof?

What is a Proof?

Proof

- A proof is an argument that is precise and logically correct.

General Structure of a Typical Proof

- Given a set of assumptions, prove a claim.
- Start from the assumptions.
- Derive a logical consequence, based on the assumptions.
- Add the new consequence to the original set of assumptions.
- Continue until the claim can be derived from the assumptions.

What is a Proof?

Proof Structure

- Given P, prove Q :

Assume P. \# Given assumption
Then \mathbf{R}_{1}. \# by P or another known fact
Then \mathbf{R}_{2}. \# by R_{1} or another known fact

Then $\mathbf{R}_{\mathbf{n}}$. \# by R_{n-1} or another known fact Then \mathbf{Q}. \# by R_{n} or another known fact

It is not that easy!!

How to find a proof?

Creating a Proof

- Finding a Proof: Understanding why something is true.
- Writing up the Proof: Writing up your understanding

How to find a proof?

Creating a Proof

- Finding a Proof: It is like solving a problem
- Understand the problem:
- Know what is required
- Know what is given
- Re-state the problem in your own words;
- Might help to draw some diagrams.
- Plan solution(s):
- Use similar results.
- Work backwards:
- Solving simpler versions of the problem.
- Carry out your plan
- If needed, repeat (parts of) the earlier steps.
- If you are still stuck, identify exactly what information/assumptions you require that are missing and find a way to achieve them.
- Review and verify your solution

How to find a proof?

Creating a Proof

- Finding a Proof: Understanding why something is true.
- Writing up the Proof:
- Every statement in the proof should be true in the context it's written.
- Might be helpful to use symbolic form to ensure the proof is precise.
- Often errors will be detected while the proof is being written,
- It is common to go back to step 1 to refine the proof.

What is a Proof?

Taxonomies of Claims

- Axiom: something we assert to be true, without justification.
- Theorem: a main result that we care about (at the moment).
- Lemma: a small result needed to prove a theorem.
- Corollary: an easy consequence of a theorem or a lemma.
- Conjecture: something suspected to be true, but not yet proven.

Chapter 3
 Formal Proofs

Direct Proof of Universally Quantified Implication

Universally Quantified Implications

Reminder

- $\mathbf{C}_{\mathbf{1}}: \forall x \in D, p(x) \Rightarrow q(x)$.
- $p(x)$ is the antecedent.
- $q(x)$ is the consequence.
- $\mathbf{C}_{\mathbf{1}}$ is True iff for all elements in D, whenever $p(x)$ is True, $q(x)$ is also True.

How to prove $\forall x \in D, p(x) \Rightarrow q(x)$?

- Assume x is a generic member of D and $p(x)$ is True. (Assumptions) Show that $q(x)$ is True. (Claim)
- Prove $\forall x \in \mathbb{R},(x>0) \Rightarrow(1 /(x+2)<3)$.
- Assumptions: x is a real number and $x>0$.
- Claim: $(1 /(x+2))<3$.

Proving Universally Quantified Implications

- Most of the times, the given assumptions are not enough for proving the claim.
- $(1 /(x+2)<3)$ cannot be derived directly from $(x>0)$.
- Must use previously proven statements and axioms that link the assumptions to the claim:

$$
\begin{array}{ll}
\mathbf{C}_{\mathbf{2}} .0 & : \\
\mathbf{C}_{\mathbf{2}} . \mathbf{1}: & \forall x \in D, p(x) \Rightarrow r_{1}(x) \\
r_{1}(x) \Rightarrow r_{2}(x)
\end{array}
$$

$\mathbf{C}_{\mathbf{2} . \mathbf{n}:} \quad \forall x \in D, r_{n}(x) \Rightarrow q(x)$

Proof Structure for Universally Quantified Implications

Assume $x \in D . \quad \# x$ is a generic element of D
Assume $p(x) . \quad \# x$ has property p, the antecedent
Then $r_{1}(x)$. \# by $\mathbf{C}_{\mathbf{1}} .0$
Then $r_{2}(x) . \quad \#$ by $\mathbf{C}_{\mathbf{1}} . \mathbf{1}$

Then $q(x) . \quad \#$ by $\mathbf{C}_{\mathbf{1}} . \mathbf{n}$
Then $p(x) \Rightarrow q(x)$. \# assuming antecedent leads to consequent Then $\forall x \in D, p(x) \Rightarrow q(x)$. \# we only assumed x is a generic D

- The explanation after \# is justification for each step.
- The indentation shows the scope of the assumptions.

Proving Universally Quantified Implications

Example

- Prove $\forall x \in \mathbb{R},(x>0) \Rightarrow(1 /(x+2)<3)$.

Assume $x \in \mathbb{R}$. $\quad \# x$ is a typical real number
Assume $x>0$. \# antecedent
\vdots \# prove $1 /(x+2)<3$
Then $1 /(x+2)<3$. \# get here somehow
Then $x>0 \Rightarrow 1 /(x+2)<3$. \# antecedent implies consequent Then $\forall x \in \mathbb{R}, x>0 \Rightarrow 1 /(x+2)<3 . \quad \# x$ is a typical element of \mathbb{R}

Proving Universally Quantified Implications

Example

- Prove $\forall x \in \mathbb{R},(x>0) \Rightarrow(1 /(x+2)<3)$.

Assume $x \in \mathbb{R}$. $\quad \# x$ is a typical real number
Assume $x>0$. \# antecedent
Then $x+2>2$. $\quad \# x>0$, add 2 to both sides
Then $1 /(x+2)<1 / 2$. \# reciprocals reverse inequality, and are defined for numbers >2
Then $1 /(x+2)<3$. \# since $1 /(x+2)<1 / 2$ and $1 / 2<3$
Then $x>0 \Rightarrow 1 /(x+2)<3$. \# antecedent implies consequent Then $\forall x \in \mathbb{R}, x>0 \Rightarrow 1 /(x+2)<3 . \quad \# x$ is a typical element of \mathbb{R}

Hunting the Elusive Direct Proof

- In practice, it is not easy to find a chain between the assumptions and the claim:
- There are many, many, many true but irrelevant facts!

$$
\begin{aligned}
& \forall x \in D, p(x) \Rightarrow\left(r_{1}(x) \wedge r_{2}(x) \wedge \cdots \wedge r_{m}(x)\right) \\
& \forall x \in D,\left(s_{k}(x) \vee \cdots \vee s_{1}(x)\right) \Rightarrow q(x)
\end{aligned}
$$

Universally Quantified Implications

Exercise

- Prove: $\forall n \in \mathbb{N}, n$ is odd $\Rightarrow n^{2}$ is odd.

Assume $n \in \mathbb{N}$. $\quad \# n$ is a generic natural number
Assume n is odd. $\quad \# n$ a typical odd natural number
Then, $\exists j \in \mathbb{N}, n=2 j+1 . \quad$ \# by definition of n odd
Then $n^{2}=(2 j+1)^{2}=4 j^{2}+4 j+1$. \# some algebra
Then $n^{2}=2\left(2 j^{2}+2 j\right)+1$. \# some algebra
Then $\exists k \in \mathbb{N}, n^{2}=2 k+1 . \quad \# k=2 j^{2}+2 j \in \mathbb{N}$
Then n^{2} is odd. \# by definition of n^{2} odd
Then n is odd $\Rightarrow n^{2}$ is odd. \# assume n is odd, derived n^{2} is odd Then $\forall n \in \mathbb{N}, n$ is odd $\Rightarrow n^{2}$ is odd. $\quad \# n$ is a generic natural number

Chapter 3
 Formal Proofs

Indirect Proof of Universally Quantified Implication

Indirect Proof of Universally Quantified Implication

Reminder: Contrapositive

- Contrapositive of $P \Rightarrow Q: \neg Q \Rightarrow \neg P$.
- Contrapositive of an implication is equivalent with the implication.

Indirect Proof of $\forall x \in D, p(x) \Rightarrow q(x)$

- $p(x) \Rightarrow q(x)$ is equivalent with $\neg q(x) \Rightarrow \neg p(x)$.
- Proving $\forall x \in D, \neg q(x) \Rightarrow \neg p(x)$, proves $\forall x \in D, p(x) \Rightarrow q(x)$

Indirect Proof of Universally Quantified Implication

Structure of an Indirect Proof

- Prove $\forall x \in D, p(x) \Rightarrow q(x)$

Assume $x \in D . \quad \# x$ is a typical element of D
Assume $\neg q(x)$. \# negation of the consequent!

Then $\neg p(x)$. \# negation of the antecedent!
Then $\neg q(x) \Longrightarrow \neg p(x)$. \# assuming $\neg q(x)$ leads to $\neg p(x)$
Then $p(x) \Rightarrow q(x)$. \# implication is equivalent to contrapositive Then $\forall x \in D, p(x) \Longrightarrow q(x) . \quad \# x$ was a typical element of D

Indirect Proof of Universally Quantified Implication

Exercise

- Prove $\forall n \in \mathbb{N}, n^{2}$ is odd $\Rightarrow n$ is odd.

Assume $n \in \mathbb{N}$. $\quad \# n$ is a generic natural number
Assume n is not odd. \# negation of the consequent
Then, $\exists j \in \mathbb{N}, n=2 j$. \# by definition of n even
Then $n^{2}=(2 j)^{2}=4 j^{2}$. \# some algebra
Then $n^{2}=2\left(2 j^{2}\right)$. \# some algebra
Then $\exists k \in \mathbb{N}, n^{2}=2 k . \quad \# k=2 j^{2} \in \mathbb{N}$
Then n^{2} is even. \# by definition of n^{2} even
Then n^{2} is not odd. \# negation of the antecedent
Then n is not odd $\Rightarrow n^{2}$ is not odd.\# assume $\neg q(x)$ leads to $\neg p(x)$
Then n^{2} is odd $\Rightarrow n$ is odd. \# impl. is equivalent to contrapos. Then $\forall n \in \mathbb{N}, n^{2}$ is odd $\Rightarrow n$ is odd. $\quad \# n$ is a generic natural number

