Chapter 3 Formal Proofs

Bahar Aameri

Department of Computer Science University of Toronto

Jan 23, 2015

Mathematical Expression and Reasoning

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

Announcements

- Assignment 1 is due next Friday Jan 30, before midnight.
- TA office Hours for Assignment 1:
 - Tuesday, Jan 27, 5-7pm in **BA3201**
 - Thursday, Jan 29, 3:30-5:30pm in BA3201
- Monday: Review session for Chapter 2.
 - Vote on the discussion board for topics that would like us to spend more time on.
- Next week tutorial exercises and quiz will only cover Chapter 2

- What is a Proof?
- Direct Proof of Universally Quantified Implication
- Indirect Proof of Universally Quantified Implication

Reminder from Chapter 1: Two Objectives of the Course

- Communicate precisely and concisely. \rightarrow Chapter 2
- Make convincing arguments, aka Proofs. \rightarrow Chapter 3

Chapter 3 Formal Proofs

What is a Proof?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Mathematical Expression and Reasoning

Proof

• A proof is an argument that is precise and logically correct.

General Structure of a Typical Proof

- Given a set of **assumptions**, prove a **claim**.
 - Start from the assumptions.
 - Derive a logical consequence, based on the assumptions.
 - Add the new consequence to the original set of assumptions.
 - Continue until the claim can be derived from the assumptions.

Proof Structure

• Given P, prove Q:

Assume **P**. # Given assumption Then **R**₁. # by *P* or another known fact Then **R**₂. # by *R*₁ or another known fact . Then **R**_n. # by *R*_{n-1} or another known fact Then **Q**. # by *R*_n or another known fact

It is not that easy!!

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Creating a Proof

- Finding a Proof: Understanding why something is true.
- Writing up the Proof: Writing up your understanding

How to find a proof?

Creating a Proof

• Finding a Proof: It is like solving a problem

- Understand the problem:
 - Know what is required
 - Know what is given
 - Re-state the problem in your own words;
 - Might help to draw some diagrams.

• Plan solution(s):

- Use **similar** results.
- Work backwards:
- Solving simpler versions of the problem.
- Carry out your plan
 - If needed, **repeat** (parts of) the earlier steps.
 - If you are still stuck, identify *exactly* what information/assumptions you require that are missing and find a way to achieve them.
- Review and verify your solution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Creating a Proof

- Finding a Proof: Understanding why something is true.
- Writing up the Proof:
 - Every statement in the proof should be true in the context it's written.
 - Might be helpful to use symbolic form to ensure the proof is precise.
 - Often errors will be detected while the proof is being written,
 - It is common to go back to step 1 to refine the proof.

Taxonomies of Claims

- Axiom: something we assert to be true, without justification.
- Theorem: a main result that we care about (at the moment).
- Lemma: a small result needed to prove a theorem.
- Corollary: an easy consequence of a theorem or a lemma.
- Conjecture: something suspected to be true, but not yet proven.

Chapter 3 Formal Proofs

Direct Proof of Universally Quantified Implication

- * ロ * * @ * * 注 * 注 * つへぐ

Mathematical Expression and Reasoning

Universally Quantified Implications

Reminder

- C₁: $\forall x \in D, p(x) \Rightarrow q(x)$.
- p(x) is the **antecedent**.
- q(x) is the consequence.
- C₁ is True iff for all elements in D, whenever p(x) is True, q(x) is also True.

How to prove $\forall x \in D, p(x) \Rightarrow q(x)$?

• Assume x is a generic member of D and p(x) is **True**. (Assumptions) Show that q(x) is **True**. (Claim)

- Prove $\forall x \in \mathbb{R}, (x > 0) \Rightarrow (1/(x + 2) < 3).$
 - Assumptions: x is a real number and x > 0.
 - Claim: (1/(x+2)) < 3.

Proving Universally Quantified Implications

- Most of the times, the given assumptions are **not enough** for proving the claim.
 - (1/(x+2) < 3) cannot be derived directly from (x > 0).
- Must use **previously proven statements** and **axioms** that link the assumptions to the claim:

$$C_{2}.0: \quad \forall x \in D, p(x) \Rightarrow r_{1}(x)$$

$$C_{2}.1: \quad \forall x \in D, r_{1}(x) \Rightarrow r_{2}(x)$$

$$\vdots$$

$$C_{2}.n: \quad \forall x \in D, r_{n}(x) \Rightarrow q(x)$$

Proof Structure for Universally Quantified Implications

- The explanation after # is justification for each step.
- The indentation shows the scope of the assumptions.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Proving Universally Quantified Implications

Example

• Prove $\forall x \in \mathbb{R}, (x > 0) \Rightarrow (1/(x + 2) < 3).$

Assume $x \in \mathbb{R}$. # x is a typical real number Assume x > 0. # antecedent

prove 1/(x+2) < 3

Then 1/(x+2) < 3. # get here somehow

Then $x > 0 \Rightarrow 1/(x+2) < 3$. # antecedent implies consequent Then $\forall x \in \mathbb{R}, x > 0 \Rightarrow 1/(x+2) < 3$. # x is a typical element of \mathbb{R}

Proving Universally Quantified Implications

Example

• Prove $\forall x \in \mathbb{R}, (x > 0) \Rightarrow (1/(x + 2) < 3).$

Assume $x \in \mathbb{R}$. # x is a typical real number Assume x > 0. # antecedent Then x + 2 > 2. # x > 0, add 2 to both sides Then 1/(x + 2) < 1/2. # reciprocals reverse inequality, and are defined for numbers > 2 Then 1/(x + 2) < 3. # since 1/(x + 2) < 1/2 and 1/2 < 3Then $x > 0 \Rightarrow 1/(x + 2) < 3$. # antecedent implies consequent Then $\forall x \in \mathbb{R}, x > 0 \Rightarrow 1/(x + 2) < 3$. # x is a typical element of \mathbb{R}

Hunting the Elusive Direct Proof

- In practice, it is **not easy** to find a chain between the assumptions and the claim:
 - There are many, many, many true but irrelevant facts!

 $\forall x \in D, p(x) \Rightarrow (r_1(x) \land r_2(x) \land \dots \land r_m(x)).$ $\forall x \in D, (s_k(x) \lor \dots \lor s_1(x)) \Rightarrow q(x).$

Universally Quantified Implications

Exercise

• Prove: $\forall n \in \mathbb{N}, n \text{ is odd} \Rightarrow n^2 \text{ is odd}.$

Assume $n \in \mathbb{N}$. # n is a generic natural number Assume n is odd. # n a typical odd natural number Then, $\exists j \in \mathbb{N}, n = 2j + 1$. # by definition of n odd Then $n^2 = (2j + 1)^2 = 4j^2 + 4j + 1$. # some algebra Then $n^2 = 2(2j^2 + 2j) + 1$. # some algebra Then $\exists k \in \mathbb{N}, n^2 = 2k + 1$. # $k = 2j^2 + 2j \in \mathbb{N}$ Then n^2 is odd. # by definition of n^2 odd Then n is odd $\Rightarrow n^2$ is odd. # assume n is odd, derived n^2 is odd Then $\forall n \in \mathbb{N}, n$ is odd $\Rightarrow n^2$ is odd. # n is a generic natural number

イロト イヨト イヨト ニヨー わらの

Chapter 3 Formal Proofs

Indirect Proof of Universally Quantified Implication

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mathematical Expression and Reasoning

Indirect Proof of Universally Quantified Implication

Reminder: Contrapositive

- Contrapositive of $P \Rightarrow Q: \neg Q \Rightarrow \neg P$.
- Contrapositive of an implication is equivalent with the implication.

Indirect Proof of $\forall x \in D, p(x) \Rightarrow q(x)$

- $p(x) \Rightarrow q(x)$ is equivalent with $\neg q(x) \Rightarrow \neg p(x)$.
- Proving $\forall x \in D, \neg q(x) \Rightarrow \neg p(x)$, proves $\forall x \in D, p(x) \Rightarrow q(x)$

Indirect Proof of Universally Quantified Implication

Structure of an Indirect Proof

• Prove $\forall x \in D, p(x) \Rightarrow q(x)$

Assume $x \in D$. # x is a typical element of D Assume $\neg q(x)$. # negation of the **consequent**!

Then $\neg p(x)$. # negation of the **antecedent**! Then $\neg q(x) \implies \neg p(x)$. # assuming $\neg q(x)$ leads to $\neg p(x)$ Then $p(x) \Rightarrow q(x)$. # implication is equivalent to contrapositive Then $\forall x \in D, p(x) \implies q(x)$. # x was a typical element of D

Indirect Proof of Universally Quantified Implication

Exercise

• Prove $\forall n \in \mathbb{N}, n^2$ is odd $\Rightarrow n$ is odd.

Assume $n \in \mathbb{N}$. # n is a generic natural number Assume n is **not** odd. # negation of the consequent Then, $\exists j \in \mathbb{N}, n = 2j$. # by definition of n even Then $n^2 = (2j)^2 = 4j^2$. # some algebra Then $n^2 = 2(2j^2)$. # some algebra Then $\exists k \in \mathbb{N}, n^2 = 2k$. # $k = 2j^2 \in \mathbb{N}$ Then n^2 is even. # by definition of n^2 even Then n^2 is **not** odd. # negation of the antecedent Then n is **not** odd $\Rightarrow n^2$ is **not** odd.# assume $\neg q(x)$ leads to $\neg p(x)$ Then n^2 is odd $\Rightarrow n$ is odd. # impl. is equivalent to contrapos. Then $\forall n \in \mathbb{N}, n^2$ is odd $\Rightarrow n$ is odd. # n is a generic natural number