Chapter 2
 Logical Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Jan 12, 2015

Announcements

- Tutorials:
- Locations and times are posted on the course web page.
- Tutorial exercises are posted on the course web page. Work on the exercises before the tutorial.
- Each quiz covers all topics that you have learned during the week prior to the quiz.

Today's Topics

- Review: Negation, Conjunction, Disjunction
- Exercise: Translation between Logical Notation and English
- Exercise: Problem Solving

Chapter 2
 Logical Notation

Review: Negation, Conjunction, Disjunction

Review: Negation

Negation Symbol

For the sake of brevity we will write:
$\mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ True
$\neg \mathbf{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ False

- " \neg " is called the negation symbol.
- $\neg P\left(x_{1}, \ldots, x_{n}\right)$ is the negation of predicate $P\left(x_{1}, \ldots, x_{n}\right)$.

Example \#1

$F(x): x$ feels good.
Translate the following logical sentence to English

- $\neg F($ Betty $)$: Betty does not feel good.

Review: Conjunction (Logical AND)

Conjunctive Sentences

- A conjunction is a sentence that joins two other sentences and claims that both of the original sentences are true.
- Al makes more than $\$ 25,000$ and less than $\$ 75,000$.
- Conjunct Symbol: \wedge
- Conjunction in logical notation: $P \wedge Q$, where P and Q are logical sentences.
$L(x): x$ earns less than $\$ 75,000$.
$K(x): x$ earns more than $\$ 25,000$.
- Al makes more than $\$ 25,000$ and less than $\$ 75,000$. $K(A l) \wedge L(A L)$.
- All employees make more than $\$ 25,000$ and less than $\$ 75,000$. $\forall x \in E, K(x) \wedge L(x)$.

Review: Evaluating Conjunctions

$P \wedge Q$ is True if P is True and Q is True.
$P \wedge Q$ is False if P is False or Q is False.

Evaluating Conjunctions

- To prove, verify that both P and Q are True.
- To disprove, show that at least one of P and Q is False.

Review: Disjunction (Logical OR)

Disjunctive Sentences

- A disjunction is a sentence that joins two other sentences and claims that at least on of the original sentences are true.
- The employee is female or makes less than $\$ 75,000$.
- Disjunct Symbol: V
- Disjunction in logical notation: $\mathbf{P} \vee \mathrm{Q}$, where \mathbf{P} and Q are logical sentences.
$L(x): x$ earns less than $\$ 75,000$.
$F(x): x$ is female.
- The employee is female or makes less than $\$ 75,000$. $x \in E, F(x) \vee L(x)$.
- All employees are female or make less than $\$ 75,000$.
$\forall x \in E, F(x) \vee L(x)$.

Review: Evaluating Disjunctions

$P \vee Q$ is True if P is True or Q is True.
$P \vee Q$ is False if P is False and Q is False.

Evaluating Disjunctions

- To prove, verify that at least one of P and Q is True.
- To disprove, show that both P and Q are False.

Disjunction

Logical OR vs. Everyday-English OR

- Logical disjunction are true when more than one of the properties is true. \rightarrow INCLUSIVE OR
- In everyday English we sometime use $O R$ to indicate that exactly one of the properties is true. \rightarrow EXCLUSIVE OR (XOR):
- Example: Either we play the game my way, or I'm taking my ball and going home.

In this course, we do not use a symbol to denote XOR! Instead, we express exclusive-or sentences using \neg, \wedge, and \vee symbols. ${ }^{a}$

[^0]
Chapter 2
 Logical Notation

Exercises

Exercise \#1: Exclusive OR Sentences

Translate the following sentence to logical notation using \neg, \wedge, and \vee symbols.

- Exactly one of P and Q is true. $(P \wedge \neg Q) \vee(Q \wedge \neg P)$.

Exercise \#2: Translation between English and Logical Notation
E : set of all employees.
M : set of all males.
F : set of all females.
$L(x): x$ earns less than $\$ 55,000$.
$S(x, y): x$ supervises y.
$C(x): x$ is a car.
$R(x): x$ is red.
Translate the following sentences to English or logical notation:
(1) John is not an employee.
(2) $\exists x, x \in E, x \in F, \neg L(x)$.
(3) All employees are supervised by Al or they earn more than or equal to $\$ 55,000$.
(1) The car is red.

Exercise \#2: Solution
E : set of all employees.
M : set of all males.
F : set of all females.
$L(x): x$ earns less than $\$ 55,000$.
$S(x, y): x$ supervises y.
$C(x): x$ is a car.
$R(x): x$ is red.
Translate the following sentences to English or logical notation:
(1) John is not an employee.

John $\notin E$
(2) $\exists x, x \in E, x \in F, \neg L(x)$.

Exists a female employee who earns not less than $\$ 55,000$.
(3) All employees are supervised by Al or they earn more than or equal to $\$ 55,000$.
$\forall x \in E, S(A l, x) \vee \neg L(x)$
(1) The cars is red.
$C(x) \wedge R(x)$

Exercise \#3: Translation to Logical Notation

Translate the following sentences to logical notation:
(1) There is no prerequisite for CSC108.
(2) Every course has a prerequisite.
(3) Some course is not a prerequisite for any course.
(1) No course is a prerequisite for itself.
(© Some courses have several prerequisites.

Exercise \#3: Solution
C : the set of all courses.
$P(x, y): x$ is a prerequisite for y.
(1) There is no prerequisite for CSC108.
$\forall x \in C, \neg P(x, \mathrm{CSC} 108)$
(2) Every course has a prerequisite.
$\forall x \in C, \exists y \in C, P(y, x)$
(3) Some course is not a prerequisite for any course.
$\exists x \in C, \forall y \in C, \neg P(x, y)$
(1) No course is a prerequisite for itself.
$\forall x \in C, \neg P(x, x)$
(0) Some courses have several prerequisites.
$\exists x \in C, \exists y \in C, \exists z \in C, P(y, x) \wedge P(z, x) \wedge y \neq z$

[^0]: ${ }^{a}$ See Exercises \#1 in the following slides.

