Chapter 2 Logical Notation

Bahar Aameri

Department of Computer Science University of Toronto

Jan 16, 2015

Mathematical Expression and Reasoning

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

Announcements

• Assignment 1:

- Assignment 1 will be posted by Saturday.
- Due date: Jan 30, before midnight on MarkUs.
- You won't be able to log into MarkUs and submit the assignment before Jan 24.
- Assignments may be submitted in groups of up to two students. You may choose your group-mate from students in the other section.
- Submissions must be typed. LAT_EX is strongly recommended. Some usefule resources and links for LAT_EX will be posted on the web page.
- **Recommendation**: work on all questions individually! Then discuss your answers with your group-mate and prepare the final submission together.

- Review: Implication, Contrapositive, Converse
- More symbols: Equivalence
- Logical Grammar

Implication

- An **implication** is a sentence that joins two other sentences and claims that **if** the first part is true **then** the second part is also true.
 - $\mathbf{P} \Rightarrow \mathbf{Q}$: **P** implies **Q**, where **P** and **Q** are logical sentences.
- Implication Symbol: \Rightarrow .

Example

• *if* an employee is male, *then* he makes less than \$55,000.

 $\forall x \in E, M(x) \Rightarrow L(x)$

Review: Evaluating Implication

• Important: $P \Rightarrow Q$ is equivalent to $\neg P \lor Q$

 $P \Rightarrow Q$ is **True** if $\neg P$ is **True** or Q is **True**. $P \Rightarrow Q$ is **False** if $\neg P$ is **False** and Q is **False**.

Evaluating Implication

- To prove, verify that at least one of $\neg P$ and Q is True.
- To disprove, show that **both** $\neg P$ and Q are False.

Review: Contrapositive and Converse

Contrapositive of an Implication

The contrapositive of an implication $P \Rightarrow Q$ is: $\neg Q \Rightarrow \neg P$

• an employee is female \Rightarrow that employee makes less than \$55,000

Contrapositive:

• an employee doesn't make less than $55,000 \Rightarrow$ that employee is not female.

Converse of an Implication

The Converse of an implication $P \Rightarrow Q$ is: $Q \Rightarrow P$

• an employee is female \Rightarrow that employee makes less than \$55,000.

Converse:

• an employee make less than $$55,000 \Rightarrow$ that employee is female.

Vacuous Truth

Assume for all elements x in a domain U, T(x) is **False**, i.e.

 $\forall x \in U, \neg T(x).$

Evaluate the following claim:

 $\mathbf{S_1}: \forall x \in U, T(x) \Rightarrow R(x).$

 S_1 : is **True**, because

- $T(x) \Rightarrow R(x)$ is equivalent to $\neg T(x) \lor R(x)$.
- $\neg T(x)$ is **True** for all $x \in U$.

 $\mathbf{S_1}$ is vacuously true.

Vacuously True Statements

A statement is **vacuously true** if it specifies some properties for all members of an **empty set**!

Vacuously True Statements

A statement is **vacuously true** if it specifies some properties for all members of an **empty set**!

Exercise #1

Evaluate the following claims:

②
$$\forall x \in \mathbb{R}, (x^2 + 1 = 0) \Rightarrow (x = 1).$$
 (ℝ is the set of real numbers)

Vacuously True Statements

A statement is **vacuously true** if it specifies some properties for all members of an **empty set**!

Exercise #1: solution

Evaluate the following claims:

∀x ∈ N, (x < 0) ⇒ (x > x + 1).
Vacuously true, all numbers in N are greater than or equal to 0.
∀x ∈ R, (x² + 1 = 0) ⇒ (x = 1).

Vacuously true, there is no number in \mathbb{R} that satisfies $x^2 + 1 = 0$.

Chapter 2 Logical Notation

Equivalence

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ■ ● ● ● ● ●

Mathematical Expression and Reasoning

Equivalence

- An **equivalence** is a sentence that joins two other sentences and claims that the first part is true **exactly when** the second part is true.
 - $x^2 + 4x + 4 = 0$ exactly when x = -2.
- Equivalence Symbol: \Leftrightarrow .
- Equivalence in logical notation: $\mathbf{P} \Leftrightarrow \mathbf{Q}$, where \mathbf{P} and \mathbf{Q} are logical sentences.

•
$$\forall x \in \mathbb{R}, (x^2 + 4x + 4 = 0) \Leftrightarrow (x = -2).$$

Equivalence

Example

Employee	Gender	Salary
Al	male	\$60,000
Betty	female	\$500
Carlos	male	\$40,000
Doug	male	\$30,000
Ellen	female	\$15,000
Flo	female	\$20,000

 $E\colon$ the set of all employees.

M(x): x is male.

L(x): x earns between \$25,000 and \$65,000.

- Every male employee earns between \$25,000 and \$65,000. $\forall x \in E, M(x) \Rightarrow L(x)$
- Every employee earning between \$25,000 and \$65,000 is male. $\forall x \in E, L(x) \Rightarrow M(x)$
- In this domain, "The employee is male" is equivalent to "the employee earns between \$25,000 and \$65,000". $\forall x \in E, M(x) \Leftrightarrow L(x)$

Important Notes about Equivalence

 An equivalence P ⇔ Q can be written as the conjunction of two implications (we will verify this shortly):

 $(P \Rightarrow Q) \land (Q \Rightarrow P)$

- Other ways of expressing equivalence in English:
 - $P \Rightarrow Q$, and **conversely**.
 - P iff Q (iff is an abbreviation for if and only if).
 - P is **necessary** and **sufficient** for Q.
 - sufficient: $P \Rightarrow Q$.
 - necessary: $P \Leftarrow Q$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

 $P \Leftrightarrow Q$ is **True** if both P and Q are **True** or both P and Q are **False**. $P \Leftrightarrow Q$ is **False** if P is **True** and Q is **False** or P is **False** and Q is **True**.

Evaluating Equivalence

- To **prove**, verify that the boolean values of *P* and *Q* are **equal**.
- To **disprove**, show that the boolean values of *P* and *Q* are **not equal**.

Chapter 2 Logical Notation

Logical Grammar

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨーのへで

Mathematical Expression and Reasoning

Why do we need a grammar?

- There are seven different logical symbols: $\forall, \exists, \neg, \land, \lor, \Rightarrow, \Leftrightarrow$
- Combinations of these symbols can form very **complex** statements.
- To write **unambitious** statements we need to impose **conditions** on what expressions are allowed. In other words, we need a **grammar**.

Important Notes

- Grammatic (syntactic) correctness has nothing to do with logical correctness: a syntacticly correct sentence might be **True** or **False**.
- A syntacticly correct sentence might be **open** or **closed**.

Well-Formed Formulas

A grammatically correct sentence is called a Well-Formed Formula (wff)

- Any predicate is a wff.
- If P is a wff, so is $\neg P$.
- If P and Q are wffs, so is $(P \land Q)$.
- If P and Q are wffs, so is $(P \lor Q)$.
- If P and Q are wffs, so is $(P \Rightarrow Q)$.
- If P and Q are wffs, so is $(P \Leftrightarrow Q)$.
- If P is a wff (possibly open in variable x) and D is a set, then $(\forall x \in D, P)$ is a wff.
- If P is a wff (possibly open in variable x) and D is a set, then $(\exists x \in D, P)$ is a wff.
- Nothing else is a wff.

Well-Formed Formulas

- Any predicate is a wff. \rightarrow The base rule.
- If P is a wff, so is $\neg P$.
- If P and Q are wffs, so is $(P \land Q)$.
- If P and Q are wffs, so is $(P \lor Q)$.
- If P and Q are wffs, so is $(P \Rightarrow Q)$.
- If P and Q are wffs, so is $(P \Leftrightarrow Q)$.
- If P is a wff and D is a set, then $(\forall x \in D, P)$ is a wff.
- If P is a wff and D is a set, then $(\exists x \in D, P)$ is a wff.
- Nothing else is a wff. \rightarrow The closure rule.

Order of Precedence for Logical Symbols

Just like in arithmetic, we want to **avoid** writing expressions with **many parentheses**; too many parentheses make a sentence hard to read: $(\forall x \in D, ((P(x) \land (\neg Q(x))) \Rightarrow R(x)))$

Precedence Rules

Precedence decreases from top to bottom:

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$

 $\forall x \in D, P(x) \land \neg Q(x) \Rightarrow R(x)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Logical Grammar

Order of Precedence:

 $(1) \neg, (2) \land, (3) \lor, (4) \Rightarrow, (5) \Leftrightarrow, (6) \forall, (7) \exists$

Exercise #2:

Remove as many parentheses as possible:

$$(\forall x \in D, P(x) \land ((\neg Q(x)) \Rightarrow R(x))).$$

 $((\forall x \in D, P(x)) \land ((\neg Q(x)) \Rightarrow R(x))).$

Order of Precedence:

$$(1) \neg, (2) \land, (3) \lor, (4) \Rightarrow, (5) \Leftrightarrow, (6) \forall, (7) \exists$$

Exercise #2: solution

Remove as many parentheses as possible:

•
$$(\forall x \in D, P(x) \land ((\neg Q(x)) \Rightarrow R(x))).$$

 $\forall x \in D, P(x) \land (\neg Q(x) \Rightarrow R(x)).$

$$((\forall x \in D, P(x)) \land ((\neg Q(x)) \Rightarrow R(x))). (\forall x \in D, P(x)) \land (\neg Q(x) \Rightarrow R(x)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Exercise #3:

Are the following sentences wff?

- $R(\forall x \in E, y).$
- $\exists x \in E, \exists y \in E.$
- $\exists x \in E \land \exists y \in E.$
- R(x,y).
- $\exists x \in E, R(x), S(x).$

Exercise #3: solution

Are the following sentences **wff**?

- $R(\forall x \in E, y)$. No
- **2** $\exists x \in E, \exists y \in E.$ **No**
- $\exists x \in E \land \exists y \in E. \mathbf{No}$
- \bullet R(x,y). Yes
- $\exists x \in E, R(x), S(x).$ **No**
- **(**) $\forall x \in U, \exists y \in E, \forall z \in U, R(x, y) \lor S(x, z).$ **Yes**