# Chapter 2 <br> Logical Notation 

Bahar Aameri<br>Department of Computer Science<br>University of Toronto

$$
\text { Jan 16, } 2015
$$

## Announcements

- Assignment 1:
- Assignment 1 will be posted by Saturday.
- Due date: Jan 30, before midnight on MarkUs.
- You won't be able to log into MarkUs and submit the assignment before Jan 24.
- Assignments may be submitted in groups of up to two students. You may choose your group-mate from students in the other section.
- Submissions must be typed. LATEX is strongly recommended. Some usefule resources and links for $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ will be posted on the web page.
- Recommendation: work on all questions individually! Then discuss your answers with your group-mate and prepare the final submission together.


## Today's Topics

- Review: Implication, Contrapositive, Converse
- More symbols: Equivalence
- Logical Grammar


## Review: Implication

## Implication

- An implication is a sentence that joins two other sentences and claims that if the first part is true then the second part is also true.
- $\mathbf{P} \Rightarrow \mathrm{Q}$ : $\mathbf{P}$ implies Q , where $\mathbf{P}$ and Q are logical sentences.
- Implication Symbol: $\Rightarrow$.


## Example

- if an employee is male, then he makes less than $\$ 55,000$.

$$
\forall x \in E, M(x) \Rightarrow L(x)
$$

## Review: Evaluating Implication

- Important: $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$
$P \Rightarrow Q$ is True if $\neg P$ is True or $Q$ is True.
$P \Rightarrow Q$ is False if $\neg P$ is False and $Q$ is False.


## Evaluating Implication

- To prove, verify that at least one of $\neg P$ and $Q$ is True.
- To disprove, show that both $\neg P$ and $Q$ are False.


## Review: Contrapositive and Converse

## Contrapositive of an Implication

The contrapositive of an implication $P \Rightarrow Q$ is: $\neg Q \Rightarrow \neg P$

- an employee is female $\Rightarrow$ that employee makes less than $\$ 55,000$

Contrapositive:

- an employee doesn't make less than $\$ 55,000 \Rightarrow$ that employee is not female.


## Converse of an Implication

The Converse of an implication $P \Rightarrow Q$ is: $Q \Rightarrow P$

- an employee is female $\Rightarrow$ that employee makes less than $\$ 55,000$.

Converse:

- an employee make less than $\$ 55,000 \Rightarrow$ that employee is female.


## Vacuous Truth

Assume for all elements $x$ in a domain $U, T(x)$ is False, i.e.

$$
\forall x \in U, \neg T(x)
$$

Evaluate the following claim:

$$
\mathbf{S}_{\mathbf{1}}: \forall x \in U, T(x) \Rightarrow R(x)
$$

$\mathbf{S}_{1}$ : is True, because

- $T(x) \Rightarrow R(x)$ is equivalent to $\neg T(x) \vee R(x)$.
- $\neg T(x)$ is True for all $x \in U$.
$\mathbf{S}_{\mathbf{1}}$ is vacuously true.


## Vacuously True Statements

A statement is vacuously true if it specifies some properties for all members of an empty set!

## Vacuous Truth

## Vacuously True Statements

A statement is vacuously true if it specifies some properties for all members of an empty set!

## Exercise \#1

Evaluate the following claims:
(1) $\forall x \in \mathbb{N},(x<0) \Rightarrow(x>x+1)$.
(0) $\forall x \in \mathbb{R},\left(x^{2}+1=0\right) \Rightarrow(x=1)$. ( $\mathbb{R}$ is the set of real numbers)

## Vacuous Truth

## Vacuously True Statements

A statement is vacuously true if it specifies some properties for all members of an empty set!

## Exercise \#1: solution

Evaluate the following claims:
(1) $\forall x \in \mathbb{N},(x<0) \Rightarrow(x>x+1)$.

Vacuously true, all numbers in $\mathbb{N}$ are greater than or equal to 0 .
(2) $\forall x \in \mathbb{R},\left(x^{2}+1=0\right) \Rightarrow(x=1)$.

Vacuously true, there is no number in $\mathbb{R}$ that satisfies $x^{2}+1=0$.

# Chapter 2 <br> Logical Notation 

Equivalence

## Equivalence

- An equivalence is a sentence that joins two other sentences and claims that the first part is true exactly when the second part is true.
- $x^{2}+4 x+4=0$ exactly when $x=-2$.
- Equivalence Symbol: $\Leftrightarrow$.
- Equivalence in logical notation: $\mathbf{P} \Leftrightarrow \mathbf{Q}$, where $\mathbf{P}$ and Q are logical sentences.
- $\forall x \in \mathbb{R},\left(x^{2}+4 x+4=0\right) \Leftrightarrow(x=-2)$.


## Equivalence

## Example

| Employee | Gender | Salary |
| :--- | :--- | ---: |
| Al | male | $\$ 60,000$ |
| Betty | female | $\$ 500$ |
| Carlos | male | $\$ 40,000$ |
| Doug | male | $\$ 30,000$ |
| Ellen | female | $\$ 15,000$ |
| Flo | female | $\$ 20,000$ |

$E$ : the set of all employees.
$M(x): x$ is male.
$L(x): x$ earns between $\$ 25,000$ and $\$ 65,000$.

- Every male employee earns between $\$ 25,000$ and $\$ 65,000$. $\forall x \in E, M(x) \Rightarrow L(x)$
- Every employee earning between $\$ 25,000$ and $\$ 65,000$ is male. $\forall x \in E, L(x) \Rightarrow M(x)$
- In this domain, "The employee is male" is equivalent to "the employee earns between $\$ 25,000$ and $\$ 65,000$ ".
$\forall x \in E, M(x) \Leftrightarrow L(x)$


## Important Notes about Equivalence

- An equivalence $P \Leftrightarrow Q$ can be written as the conjunction of two implications (we will verify this shortly):

$$
(P \Rightarrow Q) \wedge(Q \Rightarrow P)
$$

- Other ways of expressing equivalence in English:
- $P \Rightarrow Q$, and conversely.
- $P$ iff $Q$ (iff is an abbreviation for if and only if).
- $P$ is necessary and sufficient for $Q$.
- sufficient: $P \Rightarrow Q$.
- necessary: $P \Leftarrow Q$.


## Evaluating Equivalence

$P \Leftrightarrow Q$ is True if both $P$ and $Q$ are True or both $P$ and $Q$ are False. $P \Leftrightarrow Q$ is False if $P$ is True and $Q$ is False or $P$ is False and $Q$ is True.

## Evaluating Equivalence

- To prove, verify that the boolean values of $P$ and $Q$ are equal.
- To disprove, show that the boolean values of $P$ and $Q$ are not equal.


# Chapter 2 <br> Logical Notation 

Logical Grammar

- There are seven different logical symbols: $\forall, \exists, \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Combinations of these symbols can form very complex statements.
- To write unambitious statements we need to impose conditions on what expressions are allowed. In other words, we need a grammar.


## Important Notes

- Grammatic (syntactic) correctness has nothing to do with logical correctness: a syntacticly correct sentence might be True or False.
- A syntacticly correct sentence might be open or closed.


## Well-Formed Formulas

A grammatically correct sentence is called a Well-Formed Formula (wff)

- Any predicate is a wff.
- If $P$ is a wff, so is $\neg P$.
- If $P$ and $Q$ are wffs, so is $(P \wedge Q)$.
- If $P$ and $Q$ are wffs, so is $(P \vee Q)$.
- If $P$ and $Q$ are wffs, so is $(P \Rightarrow Q)$.
- If $P$ and $Q$ are wffs, so is $(P \Leftrightarrow Q)$.
- If $P$ is a wff (possibly open in variable $x$ ) and $D$ is a set, then $(\forall x \in D, P)$ is a wff.
- If $P$ is a wff (possibly open in variable $x$ ) and $D$ is a set, then $(\exists x \in D, P)$ is a wff.
- Nothing else is a wff.


## Well-Formed Formulas

- Any predicate is a wff. $\rightarrow$ The base rule.
- If $P$ is a wff, so is $\neg P$.
- If $P$ and $Q$ are wffs, so is $(P \wedge Q)$.
- If $P$ and $Q$ are wffs, so is $(P \vee Q)$.
- If $P$ and $Q$ are wffs, so is $(P \Rightarrow Q)$.
- If $P$ and $Q$ are wffs, so is $(P \Leftrightarrow Q)$.
- If $P$ is a wff and $D$ is a set, then $(\forall x \in D, P)$ is a wff.
- If $P$ is a wff and $D$ is a set, then $(\exists x \in D, P)$ is a wff.
- Nothing else is a wff. $\rightarrow$ The closure rule.


## Order of Precedence for Logical Symbols

Just like in arithmetic, we want to avoid writing expressions with many parentheses; too many parentheses make a sentence hard to read:
$(\forall x \in D,((P(x) \wedge(\neg Q(x))) \Rightarrow R(x)))$

## Precedence Rules

Precedence decreases from top to bottom:
(1) ᄀ
(2) $\wedge$
© $\vee$
(1) $\Rightarrow$
( $6 \Leftrightarrow$
(6) $\forall$
© $\exists$
$\forall x \in D, P(x) \wedge \neg Q(x) \Rightarrow R(x)$

## Logical Grammar

## Order of Precedence:

$(1) \neg,(2) \wedge,(3) \vee,(4) \Rightarrow,(5) \Leftrightarrow,(6) \forall,(7) \exists$

## Exercise \#2:

Remove as many parentheses as possible:
(1) $(\forall x \in D, P(x) \wedge((\neg Q(x)) \Rightarrow R(x)))$.
(2) $((\forall x \in D, P(x)) \wedge((\neg Q(x)) \Rightarrow R(x)))$.

## Logical Grammar

Order of Precedence:
$(1) \neg,(2) \wedge,(3) \vee,(4) \Rightarrow,(5) \Leftrightarrow,(6) \forall,(7) \exists$

## Exercise \#2: solution

Remove as many parentheses as possible:
(1) $(\forall x \in D, P(x) \wedge((\neg Q(x)) \Rightarrow R(x)))$. $\forall x \in D, P(x) \wedge(\neg Q(x) \Rightarrow R(x))$.
(2) $(\forall x \in D, P(x)) \wedge((\neg Q(x)) \Rightarrow R(x)))$. $(\forall x \in D, P(x)) \wedge(\neg Q(x) \Rightarrow R(x))$.

## Logical Grammar

## Exercise \#3:

Are the following sentences wff?
(1) $R(\forall x \in E, y)$.
(2) $\exists x \in E, \exists y \in E$.
(3) $\exists x \in E \wedge \exists y \in E$.
(1) $R(x, y)$.
(6) $\exists x \in E, R(x), S(x)$.
(6) $\forall x \in U, \exists y \in E, \forall z \in U, R(x, y) \vee S(x, z)$.

## Logical Grammar

## Exercise \#3: solution

Are the following sentences wff?
(1) $R(\forall x \in E, y)$. No
(2) $\exists x \in E, \exists y \in E$. No
(3) $\exists x \in E \wedge \exists y \in E$. No
(1) $R(x, y)$. Yes
(6) $\exists x \in E, R(x), S(x)$. No
(0) $\forall x \in U, \exists y \in E, \forall z \in U, R(x, y) \vee S(x, z)$. Yes

