$$
\begin{aligned}
& \text { For all natural numbers } a, b, n \\
& (a \equiv b \bmod n)=>\left(a=b^{2} \bmod n\right) \\
& \text { Restate the definition: } \\
& (a \equiv b \text { mod } n)<=>\text { divides }(a-b)<=>\text { exists an integer } k \text { such that }(a-b)=k n \\
& \text { Restate the claim: } \\
& \text { if exists an integer } k \text { such that }(a-b)=k n \text { then exists an integer } k^{\prime} \text { s.t }\left(a^{2}-b^{2}\right)=k^{\prime} n \\
& \text { Scratch Work: } \\
& a-b=k n==> \\
& (a-b)(a+b)=k n(a+b)===>\left(a^{2}-b^{2}\right)=k n(a+b)===>k^{\prime}=k(a+b) \\
& ===>\text { then exists an integer } k^{\prime} \text { such that } \quad\left(a^{2}-b^{2}\right)=k^{\prime} n
\end{aligned}
$$

exists an integer n such that $n^{2}-2$ is divisible by $4===>$
exists an integer n, exists an integer k such that $n^{2}-2=4 k===>$
Scratch Work (Proof by Contradiction)

For any integer $n, n^{2} \quad 2$ is not divisible by 4
(go backward through the scratch work to complete the proof)

