Scratch Work: $a - b = kn ==> (a - b) (a + b) = kn(a + b) ===> (a^2 - b^2) = kn(a + b) ===> k' = k(a + b)$ ===> then exists an integer k' such that $(a^2 - b^2) = k'n$	 (a ≡ b mod n) => (a² = b² mod n) Restate the definition: (a ≡ b mod n) <=> n divides (a - b) <=> exists an integer k such that (a - b) =kn Restate the claim: if exists an integer k such that (a - b) =kn then exists an integer k' s.t (a² - b²) = k'n 	Note Title For all natural numbers a, b, n
		2015-04-01

			sqrt(2) is not an integer, but by the assumption n is an integer ===> Contradiction!	Inl = sart(2) * sart(2k+1)	$n^2 = 4k + 2 = 2(2k+1)$ 2 is not a factor of 2k+1 because 2k+1 is an odd number	exists an integer n , exists an integer k such that n²-2 = 4k ===>	exists an integer n such that n² - 2 is divisible by 4 === >	Scratch Work (Proof by Contradiction):	for all integers n , there is no integer k such that $n^2-2 = 4k$	Restate the claim:	For any integer <i>n</i> , n^2 2 is not divisible by 4.	

$a^2 + b^2$ is not a perfect square. ===> Contradiction because $a^2 + b^2 = c^2$	
a + b - + (x + x + x)) + c + (x + x + x) + c + (x + x) + (
$a^2 + b^2 = 4$ ($k^2 + k'^2 + k + k'' + 2$ = > 4 ($k^2 + k' + k' + k' + 2$ is not a perfect square by the previous example ==	
a = 2k+1 and b = 2k'+1 ==> $a^2 + b^2 = (2k+1)^2 + (2k'+1)^2 = 4k^2 + 4k + 1 + 4k'^2 + 4k' + 1$	
exists a , b , c such that odd(a) and odd(b) and $a^2 + b^2 = c^2 ===>$	
Scratch Work (Droof by Contradiction):	
-	
$A^{a} = \sum (A) A A (A) = \sum (A) A (A$	
If <i>a</i> , <i>b</i> , and <i>c</i> are integers and $a^2 + b^2 = c^2$, then at least one of <i>a</i> and <i>b</i> is even.	

			(go backward through the scratch work to complete the proof)	n >= 3 ===> B = 3	$\beta = (\beta^2)(\beta^2 - \beta - \beta) = (\beta^2 - \beta - \beta) (-1)(\beta^2 - \beta)$	6 =< n ⁴ - n ³ - 5n ²	Assume n ³ + 2n ² + 1 =< c(n ⁴ -3n ² -5), c = 1		Lim f(n)/g(n) = 0 ===> c=1	Prove that f(n)=n ³ + 2n ² + 1 is in Big-O of g(n)=n ⁴ -3n ² -5		