Review
 Chapter 4

Bahar Aameri
Department of Computer Science
University of Toronto

Mar 31, 2015

Announcements

- Additional Instructor Office Hours (Bahar):
- Apr 01, 12-1pm, BA3201
- Apr 08, Time and location TBA.
- Additional TA Office Hours:
- Mar 30, 4-6pm, BA3201
- Mar 31, 4-6pm, BA3201
- Apr 01, 1-3pm, BA2230
- More to be announced!

The Final Exam

- Content and Duration:
- Chapters 1.5, 2, 3, 4 (excluding Sections 4.2 and 4.3)
- 3 Hours
- Aid Sheet:
- No Aids are allowed
- BUT, we will provide an Aid Sheet
- The Aid Sheet will include:
- Derivation rules, excluding the following rules:

Contrapositive, Implication, Equivalence, Double Negation, DeMorgan's, Implication Negation, Equivalence Negation, Quantifier Negation.

- Definitions of Big- \mathcal{O}, Big- Ω, Big- Θ
- Definitions of limit in the regular case and in the case when the limit is infinity.

The Final Exam

- General Advise:
- Review the course notes.
- Review the lectures notes.
- Review all tutorial exercises and quizzes.
- Review all your assignments and tests, identify where you made a mistake and find out why, review the sample solutions.
- Do the exercises posted on the course website, and past exams.

Today's Topics

- Disproving Bounds for Functions
- Algorithm Analysis
- Induction

Disproving Upper Bound using Limits

Reminder: Big-O

- $\mathbf{f} \in \mathcal{O}(\mathbf{g})$: $\exists \mathrm{c} \in \mathbb{R}^{+}, \exists \mathrm{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathrm{B} \Rightarrow f(n) \leq \mathrm{c} . g(n)$
- $\mathbf{f} \notin \mathcal{O}(\mathbf{g})$:
$\forall c \in \mathbb{R}^{+}, \forall \mathrm{B} \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq \mathrm{B} \wedge f(n)>\mathrm{c} . g(n)$

Reminder: Special Case of Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
$\Longleftrightarrow \mathbb{R}^{+}, \not \underbrace{\exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow \frac{f(n)}{g(n)}>\varepsilon}$

Disproving Upper Bound using Limits

Reminder: Special Case of Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
$\forall c \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow, f(n)>c . g(n)$
$\forall c \in \mathbb{R}^{+} \forall B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \wedge f(n)>c . g(n)$
Assume $c \in \mathbb{R}^{+}$, assume $B \in \mathbb{N} . \quad$ \# arbitrary values
Then $\exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow f(n)>c . g(n)$. \# definition of $\lim _{n \rightarrow \infty} f(n) / g(n)=\infty$
Let n_{1} be such that $\forall n \in \mathbb{N}, n \geq n_{1} \Longrightarrow f(n)>c . g(n)$. \# instantiate n^{\prime} Let $n_{0}=\max \left(B, n_{1}\right)$. Then $n_{0} \in \mathbb{N}$.
\longrightarrow Then $n_{0} \geq B$. \# by definition of max
\rightarrow Then $f\left(n_{0}\right)>c . g\left(n_{0}\right)$. \# by the assumption above $f(n)>c . g(n)$, since $n_{0} \geq n_{1}$
Then $n_{0} \geq B \wedge f\left(n_{0}\right) \geq c . g\left(n_{0}\right)$. \# introduce \wedge
Then $\exists n \in \mathbb{N}, n \geq B \wedge f(n)>\operatorname{c.g}(n) \quad$ \# introduce \exists
Then $\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge f(n)>c . g(n) \quad \#$ introduce \forall

Disproving Upper Bound using Limits

Disproving Big-O

- Show that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.
- Use the proof in the previous slide to show that $\mathbf{f} \notin \mathcal{O}(\mathbf{g})$.

Disproving Lower Bounds

Reminder: Big- Ω

- $\mathbf{f} \in \boldsymbol{\Omega}(\mathbf{g})$:
$\longrightarrow \exists \mathbf{c} \in \mathbb{R}^{+}, \exists \mathbf{B} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \mathbf{B} \Rightarrow f(n) \geq \mathbf{c} . g(n)$
- $\mathbf{f} \notin \boldsymbol{\Omega}(\mathbf{g})$:
$\forall \mathbf{c} \in \mathbb{R}^{+}, \forall \mathbf{B} \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq \mathbf{B} \wedge f(n)<\mathbf{c} . g(n)$

Reminder: Limits

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \mathbf{n}^{\prime} \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}^{\prime} \Rightarrow \mathbf{L}-\varepsilon<\frac{\mathbf{f}(\mathbf{n})}{\mathrm{g}(\mathbf{n})}<\mathbf{L}+\varepsilon
$$

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
$\rightarrow \forall \varepsilon \in \mathbb{R}^{+}, \exists \mathbf{n}^{\prime} \in \mathbb{N}, \forall \mathbf{n} \in \mathbb{N}, \mathbf{n} \geq \mathbf{n}^{\prime} \Rightarrow-\varepsilon<\frac{\mathbf{f}(\mathbf{n})}{\mathrm{g}(\mathbf{n})}<\varepsilon$

Algorithm Analysis

Proving a Tight Bound $W(n)$ for Worst-case Running Time

- Give an expression $U(n)$ which represents an overestimate of the worst-case running time.
- Give an specific case such that the corresponding running time function $L(n)$ is in $\Omega(W)$.
- Prove $L \in \Omega(W)$ and $U \in \mathcal{O}(W)$

Algorithm Analysis

$$
1+n+n+4 n+3 n+3 n+n=13 n+1
$$

```
def mystery2(L):
""" L is a non-empty list of length len(L) = n. """
    i = 1 1 # line 1
    while i < len(L) - 1: \Omega # line 2
    | =i-1 n # line 3
    while j <= i + 1: 4n
        L[j] = L[j] + L[i] 3n
3n # line 6
    i = i + 1
        n
    # line
        4i+1-(i-1)+1+1=4
    # line 5
        j = j + 1
    # line 7
```


Algorithm Analysis

$$
2+n+1+n+n^{2}+n+2 n^{2}+n^{3}+n^{2}+2 n^{3}+3 n^{2}+n+1=4+4 n+7 n^{2}+3 n^{3}
$$

Running Time Analysis for Maximum Sum (MS)

- Claims: $T_{M S} \in \mathcal{O}\left(n^{3}\right)$

```
def max_sum(L):
    # To generate all non-empty slices [i:j] for list L, i must
    # take on values from 0 to len(L)-1, and j must take on
    # values from i+1 to len(L).
    max = 0 # # line 1
    i = 1 # line 2
    while i< len(L): n+1 # line 3
        j = i + 1 n # line 4
        while j <= len(L):n (n-i+1) =< n' nn# line 5
            # Compute the sum of L[i:j].
            sum =0 n 2 # line 6
            k = i n n
            while k<j: n
                sum = sum + L[k] n n # line 9
                k = k + 1 n m # line 10
                # Update max if appropriate.
                if sum > max: n
                        max = sum n N
                j = j + 1 n' # line 13
            i = i + 1 n # line 14
    # At this point, we've examined every slice.
    return max 1 # line 15
```


Algorithm Analysis

We only consider the first $1 / 3$ iteration of the loop over i

Running Time Analysis for Maximum Sum (MS)

- Claims: $T_{M S} \in \Omega\left(n^{3}\right)$ def max_sum(L):
\# To generate all non-empty slices [i:j] for list L, i must
\# take on values from 0 to len(L) -1 , and j must take on
\# values from i+1 to len(L).
$\max =0 \quad$ \# line 1
i $=0 \quad$ \# line 2
while $i<\operatorname{len}(L): n / 3$
\# line 3
$\mathrm{j}=\mathrm{i}+1$
while $\mathrm{j}<=\operatorname{len}(\mathrm{L}): \mathrm{n} / 3(\mathrm{n}-\mathrm{n} / 3)=2 \mathrm{n}^{2} / 9$ \# line 4
5
$\mathrm{j}=\mathrm{i}+1$
while j <= $\operatorname{len}(\mathrm{L}): \mathrm{n} / 3(\mathrm{n}-\mathrm{n} / 3)=2 \mathrm{n}^{2} / 9$ \# line 4
5
\# Compute the sum of $L[i: j]$.
sum $=0$
\# line 6
$\mathrm{k}=\mathrm{i}$
\# line 7
while $k<j: n^{2} / 9(2 n / 3-n / 3)=n^{3} / 27 \#$ line 8
sum $=$ sum $+\mathrm{L}[\mathrm{k}] \quad$-\# line 9
$\mathrm{k}=\mathrm{k}+1 \quad$ \# line 10
\# Update max if appropriate.
if sum > max: \# line 11
$\max =$ sum \quad \# line 12
$j=j+1 \quad$ \# line 13
$i=i+1 \quad$ \# line 14
\# At this point, we've examined every slice.
return max \# line 15
at least $n^{3} / 27$ steps
mpty slices [i:j] for list L, i must
to len(L) -1 , and j must take on
3
4
5
0
def max_sum(L):
1
$+$

Proof by Induction

Prove $\forall n \in \mathbb{N} \backslash S, P(n)$

- Prove the Base Case, P(b).
- Assume $\mathrm{P}(\mathrm{n})$ (Induction Hypothesis), and prove $P(n+1)$.

Proof by Induction

An Easy Exercise

- Show that $1+2+\ldots+n=\frac{n(n+1)}{2}$

