Chapter 4

Algorithm Analysis and Asymptotic Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Mar 20, 2015

Announcements

- Final Exam:
- Chapter 1: Only Section 1.5 (Problem-solving techniques in Section 1.3 are useful in doing proofs. See Tutorial 5 and its solutions)
- Chapter 2
- Chapter 3
- Chapter 4: Excluding Sections 4.2 and 4.3

Today's Topics

- Analyzing Running Time of Algorithms
- Running Time Analysis for Linear Search
- Running Time Analysis for Insertion Sort

Review (from Week 8)

Worst-case analysis of algorithm

Given a program P, calculate a coarse estimation of its worst-case running time based on the size of the input.

Symbolic Translation

- P : A program.
- $t_{P}(x)$: running time of program P with input x.
- I : the set of all inputs for P.
- $T_{P}(n)$: worst-case running time of P for inputs with size n.

$$
T_{P}(n)=\max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\}
$$

Review (from Week 8)

Worst-case analysis of algorithm

- It is infeasible to calculate the exact value of $T_{P}(n)$.
- We only need a coarse estimation
(1) We assume that the running time of all lines of P are equal $\rightarrow t_{P}(x)$ denotes the number of lines that are executed for x.
(2) We use Big- Θ to give an estimation for $T_{P}(n)$.

Running Time Analysis for Linear Search (LS)

- Claim: $T_{L S} \in \Theta(n)$

```
def LS(A,x):
    """ Return an index i such that x == L[i].
    Otherwise, return -1. """
```

```
i = 0
```

i = 0
while i < len(A): \# (line 2)
while i < len(A): \# (line 2)
*(line 1)
*(line 1)
if A[i] == x: \# (line 3)
if A[i] == x: \# (line 3)
return i \# (line 4)
return i \# (line 4)
i = i + 1 \# (line 5)
i = i + 1 \# (line 5)
return -1 \# (line 6)

```
    return -1 # (line 6)
```


Finding a Tight Bound for an Algorithm

Finding a Tight Bound

$T_{P} \in \Theta(W)$ iff $T_{P} \in \mathcal{O}(W)$ and $T_{P} \in \Omega(W)$.

Finding an Upper Bound

$T_{P} \in \mathcal{O}(W) \quad$ iff
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T_{P}(n) \leq c W(n) \quad$ iff
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\} \leq c W(n)$
To prove $T_{P} \in \mathcal{O}(W)$, must show that:
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall x \in I, \operatorname{size}(x) \geq B \Rightarrow t_{P}(x) \leq c W(\operatorname{size}(x))$

Finding a Lower Bound

$T_{P} \in \Omega(W)$ iff
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\} \geq c W(n)$
To prove $T_{P} \in \mathcal{O}(W)$, must show that:
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \exists x \in I, \operatorname{size}(x)=n \wedge t_{P}(x) \geq c W(n)$

Example \#1

Running Time Analysis for Linear Search (LS)

- Claim: $T_{L S} \in \mathcal{O}(n)$
def LS(A,x):
""" Return an index i such that $\mathrm{x}==\mathrm{L}$ i]. Otherwise, return -1. """

$$
i=0 \quad 1
$$

while $i<\operatorname{len}(A): \quad$ at most $\mathrm{n}+1$
\# (line 1)
\# (line 2)

$$
\begin{aligned}
\text { if } \begin{aligned}
\mathrm{A}[\mathrm{i}]=\mathrm{x}: & \\
& \text { return } \mathrm{i}
\end{aligned} & & \text { at most } \mathrm{n} \\
\mathrm{i}=\mathrm{i}+1 & & \text { at most } \mathrm{n}
\end{aligned}
$$

$$
\text { return }-11
$$

```
# (line 6)
```


Example \#1

Running Time Analysis for Linear Search (LS)

- Claim: $T_{L S} \in \mathcal{O}(n)$

Assume $n \in \mathbb{N}, A$ is an array of length n.
Then lines $2-5$ execute not more than $3 n$ steps, plus 1 step for the last loop test. (add the explanations from the previous slide for justification)
So lines $1-6$ take no more than $3 n+3$ steps.
Then $\forall n \in \mathbb{N}$ and all possible inputs $A, x, t_{L S}(A)$ is less than $3 n+3$ steps.

- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3 n+3 \leq c n$

Let $c=6$. Let $B=1$. Then $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Assume $n \in \mathbb{N}, A$ is an array of length n, and $n \geq B$.
Then $3 n \leq 3 n$. \# both sides are equal
Then $3 n+3 \leq 3 n+3 n=6 n$. $\quad \# n \geq 1$
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow T_{L S}(n) \leq c n$. \# definition of $T_{L S}$
Then $T_{L S} \in \mathcal{O}(n)$. \# by definition of $\mathcal{O}(n)$

Example \#1

Running Time Analysis for Linear Search (LS)

- Claim: $T_{L S} \in \Omega(n)$
assume x is equal to the middle entry of A def LS(A,x):
""" Return an index i such that $x==$ L[i].
Otherwise, return -1. """
$i=0 \quad 1$
\# (line 1)
while $\mathrm{i}<\operatorname{len}(\mathrm{A}):$ at most $\mathrm{n} / 2+1$
\# (line 2)

return -1
\# (line 6)

Example \#1

Running Time Analysis for Linear Search (LS)

- Claim: $T_{L S} \in \Omega(n)$

Assume $n \in \mathbb{N}$, Let A is an array of length n and $x=A[\lceil n / 2\rceil]$.
Then lines $2-5$ execute not more than $3\lceil n / 2\rceil$ steps. (add the explanations from the previous slide for justification)
So lines $1-6$ take no less than $3\lceil n / 2\rceil+1 \geq 3 n / 2$ steps.
Then $\forall n \in \mathbb{N}$ and all possible inputs $A, t_{L S}(A)$ is greater than $3 n / 2$ steps.

- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3 n / 2 \geq c n$

Let $c=1 / 2$. Let $B=1$. Then $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Assume $n \in \mathbb{N}, A$ is an array of length n and $x=A[\lceil n / 2\rceil]$, and $n \geq B$.
Then $3 n / 2 \geq n / 2$. \# $3>1$
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow T_{L S}(n) \geq c n$. \# definition of $T_{L S}$
Then $T_{L S} \in \Omega(n)$. \# by definition of $\Omega(n)$

Example \#2

Running Time Analysis for Insertion Sort (IS)

- Claim: $T_{I S} \in \mathcal{O}\left(n^{2}\right) \quad \mathrm{n}=\operatorname{len}(\mathrm{A})$

def IS(A):

""" Sort the elements of A in non-decreasing order. """ i $=1 \quad 1 \quad$ \# (line 1) while i < len(A): at most $\mathrm{n}+1$ \# (line 2)

Example \#2

Running Time Analysis for Insertion Sort (IS)

- Claim: $T_{I S} \in \mathcal{O}\left(n^{2}\right)$

Assume $n \in \mathbb{N}, A$ is an array of length n.
Then lines 5-7 execute not more than $3 n$ steps, plus 1 step for the last loop test. (add the explanations from the previous slide for justification)
Then lines $2-9$ take no more than $n(5+3 n)+1=5 n+3 n^{2}+1$ steps. (add the explanations from the previous slide for justification)
So lines $1-9$ take no more than $5 n+3 n^{2}+2$ steps.
Then $\forall n \in \mathbb{N}$ and all possible inputs $A, t_{p}(A)$ is less than $5 n+3 n^{2}+2$ steps.

- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3 n^{2}+5 n+2 \leq c n^{2}$

Let $c=9$. Let $B=1$. Then $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Assume $n \in \mathbb{N}, A$ is an array of length n, and $n \geq B$.
Then $3 n^{2} \leq 3 n^{2}$. \# both sides are equal
Then $3 n^{2}+5 n+2 \leq 3 n^{2}+5 n^{2}+2 n^{2}=9 n^{2}$. \#n ≥ 1
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow T_{I S}(n) \leq c n^{2}$. \# definition of $T_{I S}$
Then $T_{I S} \in \mathcal{O}\left(n^{2}\right)$. \# by definition of $\mathcal{O}\left(n^{2}\right)$

Example \#2

Running Time Analysis for Insertion Sort (IS)

- Claims: $T_{I S} \in \Omega\left(n^{2}\right)$

$$
\text { assume } A=[n-1, n-2, \ldots, 0]
$$

def IS(A):
""" Sort the elements of A in non-decreasing order. """

$$
i=1 \quad 1 \quad \# \text { (line 1) }
$$

$$
\text { while i < len(A): at most } \mathrm{n} \quad \text { \# (line 2) }
$$

each iteration

$$
\mathrm{t}=\mathrm{A}[\mathrm{i}] \text { at most } \mathrm{n}=\mathbf{1}
$$ at most i, plus 1 for finla check

each iteration at most 2i
$A[j]=A[j-1]$

$$
j=j-1
$$

$$
\mathrm{A}[\mathrm{j}]=\mathrm{t} \text { at most } \mathrm{n}-1
$$

$$
\mathrm{i}=\mathrm{i}+1 \text { at most } \mathrm{n}-1
$$

\# (line 3)
\# (line 4)
\# (line 5)
\# (line 6)
\# (line 7)
\# (line 8)
\# (line 9)
sum of 3i+1
for $i=1$ to $n-1$

Example \#2

Running Time Analysis for Insertion Sort (IS)

- Claim: $T_{I S} \in \Omega\left(n^{2}\right)$

Assume $n \in \mathbb{N}, A=[n-1, n-2, \ldots, 0]$.
Then lines $5-7$ execute $3 i$ steps each iteration of the outer loop, plus 1 step for the final loop check.
Then lines $2-9$ take $n+4(n-1)+3 n(n-1) / 2+(n-1)=3 n^{2} / 2+9 n / 2-5$ steps. (add the explanations from the previous slide for justification)
Then lines $1-9$ take $3 n^{2} / 2+9 n / 2-4$ steps.
Then $\forall n \in \mathbb{N}$ and all possible inputs $A, t_{p}(A)$ is less than $3 n^{2} / 2+9 n / 2-4$ steps.

- $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3 n^{2} / 2+9 n / 2-4 \geq c n^{2}$

Let $c=1$. Let $B=1$. Then $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Assume $n \in \mathbb{N}, A$ is an array of length n, and $n \geq B$.
Then $3 n^{2} / 2 \geq n^{2} . \quad \# 3 / 2>1$
Then $3 n^{2} / 2+9 n / 2-4 \geq n^{2} . \quad \# n \geq 1$, so $9 n / 2-4>0$
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow T_{I S}(n) \geq c n^{2}$. \# definition of $T_{I S}$
Then $T_{I S} \in \Omega\left(n^{2}\right)$. \# by definition of $\Omega\left(n^{2}\right)$

