Chapter 2
 Logical Notation

Bahar Aameri
Department of Computer Science
University of Toronto

Jan 09, 2015

Announcements

- Tutorials:
- Locations and times are posted on the course web page.
- Tutorial exercises will be posted on the course web page before Monday. Work on the exercise before the tutorial.
- Each quiz covers all topics that you have learned during the week prior to the quiz.
- Office hours: Friday 12:30-1:30pm and 3:30-5pm in BA4261.

Today's Topics

- Evaluating Quantified Statements
- Visualization with Venn Diagram
- Logical Sentences and Statements
- Negation, Conjunction, Disjunction

Chapter 2
 Logical Notation

Evaluating Quantified Statements

Review: Sets

Properties and Relationships as Sets

- To describe a domain, we write statements that specify properties of objects within the domain and their relationships.
One way of writing statements in symbolic notation is to treat properties and relationships as sets.

Example

Emp.	Gender	Supervisor
Al	male	-
Betty	female	Doug
Carlos	male	Ellen
Doug	male	Ellen
Ellen	female	Al
Flo	female	Ellen

- Property:
$\mathbf{M}=\{x \mid x$ is male $\}$.
$\mathbf{M}=\{$ Al, Carlos, Doug $\}$.
- Relationship:
$\mathbf{S}=\{\langle x, y\rangle \mid x$ supervises $y\}$.
$\mathbf{S}=\{\langle$ Al, Ellen \rangle,\langle Ellen, Carlos \rangle,
\langle Ellen, Doug \rangle,\langle Ellen, Flo \rangle, \langle Doug, Betty \rangle \}.

Review: Quantified Statements

- When an statement is about all the objects in the domain, the statement is a Universal Quantification.
- Universal quantifier: \forall
- Examples of universally quantified statements in English:
- All employee makes less than $\$ 55,000$.
- Each male employee makes more than $\$ 55,000$.
- When an statement is about existence of one or more elements of a domain with a particular property, the statement is a Existential Quantification.
- Existential quantifier: \exists
- Examples of existentially quantified statements in English:
- Some employee earns over $\$ 65,000$.
- At least one female employee earns less than $\$ 65,000$.

Evaluating Quantified Statements

- Prove/disprove the following universally quantified claims.
- Every employee makes less than $\$ 55,000$.
- Every female employee makes less than $\$ 50,000$.
- There is no male employee which makes less than $\$ 30,000$.

Employee	Gender	Salary	Supervisor
Al	male	$\$ 60,000$	-
Betty	female	$\$ 500$	Doug
Carlos	male	$\$ 40,000$	Ellen
Doug	male	$\$ 30,000$	Ellen
Ellen	female	$\$ 50,000$	Al
Flo	female	$\$ 20,000$	Ellen

Evaluating Universally Quantified Statements

- To prove, verify that all elements of the domain is an example that satisfies the quantification.
- To disprove, give at least one counter-example that does not satisfy the quantification.

Evaluating Quantified Statements

- Prove/disprove the following existentially quantified claims.
- Some employee earns less than $\$ 57,000$.
- Some employee earns over $\$ 65,000$.
- Not every female employee earns more than $\$ 10,000$.

Employee	Gender	Salary	Supervisor
Al	male	$\$ 60,000$	-
Betty	female	$\$ 500$	Doug
Carlos	male	$\$ 40,000$	Ellen
Doug	male	$\$ 30,000$	Ellen
Ellen	female	$\$ 50,000$	Al
Flo	female	$\$ 20,000$	Ellen

Evaluating Existentially Quantified Statements

- To prove, give at least one example that satisfies the quantification.
- To disprove, verify that every element of the domain is a counter-example that does not satisfies the quantification.

Evaluating Quantifiers - Summary

Falsify (disprove)
one counterexample

Chapter 2
 Logical Notation

Visualization with Venn Diagram

Visualizing Relationships between Sets

Venn Diagram

- The rectangle represents the domain.
- Each circle represent a set in the domain.
- O in a part of a set means that this part must be occupied, i.e., there must be some element in there.
- \mathbf{X} in a part of a set means that this part must be empty, i.e., contains no element.
- $P \cap Q \neq \varnothing$

Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize $P \cap Q=\varnothing$.

Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize $P \subseteq Q$.

Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize the region which represents $\overline{P \cup Q \cup R}$

Exercise: Visualizing Relationships between Sets

- Use Venn Diagram to visualize $\overline{P \cap Q \cap R}=\varnothing$.

Chapter 2
 Logical Notation

Logical Sentences and Statements

Sentences and Statements

What is the difference between following sentences?

- The employee makes less than $\$ 55,000$.
- Betty makes less than $\$ 55,000$.
- Every employee make less than $\$ 55,000$.

Open Sentences vs. Statements

- Open Sentences include unspecified (unquantified) objects, and therefore cannot be evaluated.
- All objects in a closed sentence (aka statement) are either specified or quantified, and therefore a statement can be evaluated to True or False.

Open Sentences vs. Statements

Exercise: Is it a statement?

- $L(x)$. No
- $\forall x \in E, L(x)$. Yes
- $\forall x \in E, S(x, y)$. No
- Someone took my pen. Yes
- The pen is red. No
- Roses are red. Yes

Transforming open sentences to statements

- Specifying the values of unspecified objects:

$$
L(\mathrm{x}) \rightarrow L(\text { Carlos })
$$

- Quantifying over unspecified objects:

$$
\begin{aligned}
& L(\mathrm{x}) \rightarrow \forall \mathrm{x}, L(x) \\
& L(\mathrm{x}) \rightarrow \exists \mathrm{x}, L(x)
\end{aligned}
$$

Chapter 2
 Logical Notation

Negation, Conjunction, Disjunction

Review: Sets and Predicates

Predicates

An n-ary predicate $L\left(x_{1}, \ldots, x_{n}\right)$ is a boolean function returning True or False such that

$$
\begin{aligned}
& L\left(x_{1}, \ldots, x_{n}\right)=\text { True if } \\
& \left\langle x_{1}, \ldots, x_{n}\right\rangle \text { satisfy the property that is denoted by } L \\
& L\left(x_{1}, \ldots, x_{n}\right)=\text { False if } \\
& \left\langle x_{1}, \ldots, x_{n}\right\rangle \text { do not satisfy the property that is denoted by } L .
\end{aligned}
$$

Example

$\mathbf{M}=\{$ Al, Carlos, Doug $\}$.

- $M(A l)=$ True, $M($ Carlos $)=$ True, $M($ Doug $)=$ True.
- $M($ Betty $)=$ False,$M($ Ellen $)=$ False,$M($ Flo $)=$ False.

Review: Sets and Predicates

Predicates

An n-ary predicate $L\left(x_{1}, \ldots, x_{n}\right)$ is a boolean function returning True or False such that
$L\left(x_{1}, \ldots, x_{n}\right)=$ True if
$\left\langle x_{1}, \ldots, x_{n}\right\rangle$ satisfy the property that is denoted by L
$L\left(x_{1}, \ldots, x_{n}\right)=$ False if
$\left\langle x_{1}, \ldots, x_{n}\right\rangle$ do not satisfy the property that is denoted by L.

Important Notes about Predicates

- $L(x)$ is not a set! In a logical statement, you cannot treat a symbol both as a set and a predicate symbol
- Incorrect use of notation: $\forall x, y \in E, x \in L, L(y)$.
- Correct version: $\forall x, y \in E, x \in L, y \in L$ or $\forall x, y \in E, L(x) \wedge L(y)$.
- Don't apply set operations over predicates! $\mathbf{P}(\mathbf{x}) \cap \mathbf{Q}(\mathbf{y})$ makes no sense (why?)
- Don't nest predicates!
$\mathbf{P}(\mathbf{Q}(\mathbf{x}))$ makes no sense (why?)

Negation Symbol

For the sake of brevity we will write:
$\mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ True
$\neg \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ False

- " \neg " is called the negation symbol.
- $\neg P\left(x_{1}, \ldots, x_{n}\right)$ is the negation of predicate $P\left(x_{1}, \ldots, x_{n}\right)$.

Example \#1

$F(x)$: x feels good.
Translate the following logical sentence to English

- $\neg F($ Betty $)$: Betty does not feel good.
- Can we translate $\neg F($ Betty $)$ to: Betty feels bad?
- Only if we are given an explicit assumption, or we can formally prove that all elements in the domain either feel good or bad.

Negation Symbol

For the sake of brevity we will write:
$\mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ True
$\neg \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ False

- " \neg " is called the negation symbol.
- $\neg P\left(x_{1}, \ldots, x_{n}\right)$ is the negation of predicate $P\left(x_{1}, \ldots, x_{n}\right)$.

Example \#2

$M(x): x$ is male.
Translate the following logical sentence to English

- $\neg M($ Betty $)$: Betty is not male.
- Can we translate $\neg M($ Betty $)$ to: Betty is female?
- Only if we are given an explicit assumption, or we can formally prove that all elements in the domain are either male or female.

Negation Symbol

For the sake of brevity we will write:
$\mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ True
$\neg \mathbf{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ when $P\left(x_{1}, \ldots, x_{n}\right)=$ False

- " \neg " is called the negation symbol.
- $\neg P\left(x_{1}, \ldots, x_{n}\right)$ is the negation of predicate $P\left(x_{1}, \ldots, x_{n}\right)$.

Example \#3

$L(x): x$ earns less than $\$ 55,000$.
Translate the following logical sentence to English

- $L(x): x$ earns less than $\$ 55,000$.
$\neg L(A l): \mathrm{Al}$ does not earn less than $\$ 55,000$.
- Can we translate $\neg L(A l)$ to: Al earns more than or equal to $\$ 55,000$?
- Yes, because we have the following mathematical fact about numbers: For two numbers n and m, either $\mathbf{n}=\mathbf{m}$ or $\mathbf{n}<\mathbf{m}$ or $\mathbf{n}>\mathbf{m}$.

Conjunction (Logical AND)

Conjunctive Sentences

- A conjunction is a sentence that joins two other sentences and claims that both of the original sentences are true.
- Al makes more than $\$ 25,000$ and less than $\$ 75,000$.
- Conjunct Symbol: \wedge
- Conjunction in logical notation: $P \wedge Q$, where P and Q are logical sentences.
$L(x): x$ earns less than $\$ 75,000$.
$K(x): x$ earns more than $\$ 25,000$.
- Al makes more than $\$ 25,000$ and less than $\$ 75,000$. $K(A l) \wedge L(A L)$.
- All employees make more than $\$ 25,000$ and less than $\$ 75,000$. $\forall x \in E, K(x) \wedge L(x)$.

Evaluating Conjunctions
$P \wedge Q$ is True if P is True and Q is True.
$P \wedge Q$ is False if P is False or Q is False.

Evaluating Conjunctions

- To prove, verify that both P and Q are True.
- To disprove, show that at least one of P and Q is False.

Disjunction (Logical OR)

Disjunctive Sentences

- A disjunction is a sentence that joins two other sentences and claims that at least on of the original sentences are true.
- The employee is female or makes less than $\$ 75,000$.
- Disjunct Symbol: V
- Disjunction in logical notation: $\mathbf{P} \vee \mathrm{Q}$, where \mathbf{P} and Q are logical sentences.
$L(x): x$ earns less than $\$ 75,000$.
$F(x): x$ is female.
- The employee is female or makes less than $\$ 75,000$.

$$
x \in E, F(x) \vee L(x)
$$

- All employees are female or make less than $\$ 75,000$.
$\forall x \in E, F(x) \vee L(x)$.

Evaluating Disjunctions
$P \vee Q$ is True if P is True or Q is True.
$P \vee Q$ is False if P is False and Q is False.

Evaluating Disjunctions

- To prove, verify that at least one of P and Q is True.
- To disprove, show that both P and Q are False.
- You should be able to understand the following jokes:

```
Three logicians walk into a bar.
The bartender asks: Do all of you want a drink?
The first logician says: I don't know.
The second logician says: I don't know.
The third logician says: Yes!
```

A logician's wife is having a baby.
The doctor immediately hands the newborn to the dad.
His wife asks impatiently: So, is it a boy or a girl?
The logician replies: Yes.
(Well, it seems that the logician has made an assumption, right?)

