CSC165 Mathematical Expression and Reasoning for Computer Science

Chapter 4: Algorithm Analysis and Asymptotic Notation

Lisa Yan

Department of Computer Science
University of Toronto

March 4, 2015

Announcements

- Thursday tutorial session will be cancelled for this week.

Due to large request for office hours, updated TA office hours information for this Thursday is listed below:

- 12-2 BA3201
- 4-5:30 ВАЗ201
- Today's office hour 3-5 will be as usual at BA4261.

Asymptotic notation

- \mathcal{O}
- Ω
- Θ

Big-O Notation

Here is a precise definition of "The set of functions that are eventually no more than f, to within a constant factor":

Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$ (i.e., any function mapping naturals to nonnegative reals), let

$$
\mathcal{O}(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \leqslant c f(n)\right\} .
$$

$g \in \mathcal{O}(f)$ means that " g grows no faster than f ". Equivalently, " f is an upper bound for g ".
\mathbb{R}^{+}: the set of positive real numbers

Ω Notation

Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, let

$$
\Omega(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \geqslant c f(n)\right\}
$$

" $g \in \Omega(f)$ " expresses the concept that " g grows at least as fast as f "; f is a lower bound on g.

Θ Notation

Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, let

$$
\begin{aligned}
& \Theta(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c_{1} \in \mathbb{R}^{+}, \exists c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow\right. \\
& \left.\quad c_{1} f(n) \leqslant g(n) \leqslant c_{2} f(n)\right\} .
\end{aligned}
$$

" $g \in \Theta(f)$ " expresses the concept that " g grows at the same rate as f ". f is a tight bound for g, or f is both an upper bound and a lower bound on g.

Another \mathcal{O} Proof

Prove that $2 n^{3}-5 n^{4}+7 n^{6}$ is in $\mathcal{O}\left(n^{2}-4 n^{5}+6 n^{8}\right)$

We begin with ...

Let $c^{\prime}=$ \qquad . Then $c^{\prime} \in \mathbb{R}^{+}$.
Let $B^{\prime}=$ \qquad . Then $B^{\prime} \in \mathbb{N}$.
Assume $n \in \mathbb{N}$ and $n \geqslant B^{\prime}$. \# arbitrary natural number and antecedent
Then $2 n^{3}-5 n^{4}+7 n^{6} \leqslant \ldots \leqslant c^{\prime}\left(n^{2}-4 n^{5}+6 n^{8}\right)$.
Then $\forall n \in \mathbb{N}, n \geqslant B^{\prime} \Rightarrow 2 n^{3}-5 n^{4}+7 n^{6} \leqslant c^{\prime}\left(n^{2}-4 n^{5}+6 n^{8}\right)$. \# introduce \Rightarrow and \forall
Hence, $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 2 n^{3}-5 n^{4}+7 n^{6} \leqslant c\left(n^{2}-4 n^{5}+6 n^{8}\right)$. \# introduce \exists

Another \mathcal{O} Proof

Prove that $2 n^{3}-5 n^{4}+7 n^{6} \in \mathcal{O}\left(n^{2}-4 n^{5}+6 n^{8}\right)$

To fill in the

we try to form a chain of inequalities, working from both ends, simplifying the expressions:

$$
\begin{aligned}
2 n^{3}-5 n^{4}+7 n^{6} & \leqslant 2 n^{3}+7 n^{6} \quad\left(\text { drop }-5 n^{4}\right) \\
& \leqslant 2 n^{6}+7 n^{6} \quad\left(\text { increase } n^{3} \text { to } n^{6}\right) \\
& =9 n^{6} \leqslant 9 n^{8} \quad(\text { simpler to compare }) \\
& =2(9 / 2) n^{8} \quad\left(\text { choose } c^{\prime}=9 / 2\right) \\
& =2 c n^{8} \\
& \left.=c^{\prime}\left(-4 n^{8}+6 n^{8}\right) \quad \text { (bottom up: decrease }-4 n^{5} \text { to }-4 n^{8}\right) \\
& \leqslant c^{\prime}\left(-4 n^{5}+6 n^{8}\right) \quad\left(\text { bottom up: drop } n^{2}\right) \\
& \leqslant c^{\prime}\left(n^{2}-4 n^{5}+6 n^{8}\right)
\end{aligned}
$$

We never needed to restrict n for $n \in \mathbb{N}(n \geqslant 0)$, so we can fill in $c^{\prime}=9 / 2, B^{\prime}=0$, and complete the proof.

Exercises

Here are some general results that we now have the tools to prove.

- $3 n^{2}+2 n \in \mathcal{O}\left(n^{2}\right)$.
- $n^{3} \notin \mathcal{O}\left(3 n^{2}\right)$.
- $2^{n} \notin \mathcal{O}\left(n^{2}\right)$.
- $n^{2}+n \in \Omega\left(15 n^{2}+3\right)$.

Calculus: Limit-1

Intuitively, big-Oh notation expresses something about how two functions compare as n tends toward infinity. But we know of another mathematical notion that captures a similar (though not identical) idea: the concept of limit.

2 Definition Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

precisely, recall the following definition, for all $L \in \mathbb{R}^{\geqslant 0}$:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L \Longleftrightarrow \forall \varepsilon \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow L-\varepsilon<\frac{f(n)}{g(n)}<L+\varepsilon
$$

Calculus: Limit-1

when x is in here

$$
(x \neq 3)
$$

Note that 1 can be rewritten as follows:
if $3-\delta<x<3+\delta(x \neq 3)$ then $5-\varepsilon<f(x)<5$ and this is illustrated in Figure 1. By taking the values of $x(\neq 3)$ to lie is $(3-\delta, 3+\delta)$ we can make the values of $f(x)$ lie in the interval $(5-\varepsilon, 5$ Using 1 as a model, we give a precise definition of a limit.

2 Definition Let f be a function defined on some open interval that number a, except possibly at a itself. Then we say that the limit of f approaches a is L, and we write

Calculus: Limit-2

Infinite Limits

Infinite limits can also be defined in a precise way. The following is a precise version of Definition 4 in Section 2.2.

6 Definition Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that for every positive number M there is a positive number δ such that

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad f(x)>M
$$

precisely, recall the following definition:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty \Longleftrightarrow \forall \varepsilon \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow \frac{f(n)}{g(n)}>\varepsilon
$$

Calculus: Limit-2

Prove: $f(n) \in \mathcal{O}(g(n))$

Suppose that $\lim _{n \rightarrow \infty} f(n) / g(n)=L$. Intuitively, this tells us that $f(n) / g(n) \approx L$, for n "large enough."
In that case, $f(n) \approx L g(n)$ for n large enough, so we should be able to prove that $f \in \mathcal{O}(g)$:

Assume $\lim _{n \rightarrow \infty} f(n) / g(n)=L$.
Then $\exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow L-1.1<f(n) / g(n)<L+1.1$. \# definition of limit for $\varepsilon=1.1$
Then $\exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow f(n) \leqslant(L+1) g(n)<(L+1.1) g(n)$.
Then $f \in \mathcal{O}(g)$. \# definition of \mathcal{O}, with $B=n_{0}$ and $c=L+1$
Hence, $\lim _{n \rightarrow \infty} f(n) / g(n)=L \Rightarrow f \in \mathcal{O}(g)$.

Prove: $g(n) \notin \mathcal{O}(f(n))$

Recall that $g(n)=2^{n}$ and $f(n)=n$. We rely on the fact that $\lim _{n \rightarrow \infty} 2^{n} / n=\infty$. 1
Assume $c \in \mathbb{R}^{+}$, assume $B \in \mathbb{N}$. \# arbitrary values
Then $\exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow 2^{n} / n>c$. \# definition of
$\lim _{n \rightarrow \infty} 2^{n} / n=\infty$ with $\varepsilon=c$
Let n_{0} be such that $\forall n \in \mathbb{N}, n \geqslant n_{0} \Rightarrow 2^{n} / n>c$, and $n^{\prime}=\max \left(B, n_{0}\right)$.
Then $n^{\prime} \in \mathbb{N}$.
Then $n^{\prime} \geqslant B . \quad$ \# by definition of max
Then $2^{n^{\prime}}>c n^{\prime}$ because $2^{n^{\prime}} / n^{\prime}>c$. \# by the first line above, since $n^{\prime} \geqslant n_{0}$
Then $n^{\prime} \geqslant B \wedge g\left(n^{\prime}\right)>c f\left(n^{\prime}\right) . \quad \#$ introduce \wedge
Then $\exists n \in \mathbb{N}, n \geqslant B \wedge g(n)>c f(n) . \quad$ \# introduce \exists
Then $\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geqslant B \wedge g(n)>c f(n) . \quad$ \# introduce \forall

[^0]
Exercises

Here are some general results that we now have the tools to prove.

- $3 n^{2}+2 n \in \mathcal{O}\left(n^{2}\right)$.
- $n^{3} \notin \mathcal{O}\left(3 n^{2}\right)$.
- $2^{n} \notin \mathcal{O}\left(n^{2}\right)$.
- $n^{2}+n \in \Omega\left(15 n^{2}+3\right)$.

Exercises

Here are some general results that we now have the tools to prove.

- $3 n^{2}+2 n \in \mathcal{O}\left(n^{2}\right)$.
- $n^{3} \notin \mathcal{O}\left(3 n^{2}\right)$.
- $2^{n} \notin \mathcal{O}\left(n^{2}\right)$.
- $n^{2}+n \in \Omega\left(15 n^{2}+3\right)$.
- $7 n \in \mathcal{O}\left(n^{2}\right) ; 7 n \notin \Omega\left(n^{2}\right)$.
- $7 n^{2} \in \mathcal{O}\left(n^{2}\right) ; 7 n^{2} \in \Omega\left(n^{2}\right) ; 7 n^{2} \in \Theta\left(n^{2}\right)$.
- $7 n^{3} \notin \mathcal{O}\left(n^{2}\right) ; 7 n^{3} \in \Omega\left(n^{2}\right)$.

Some Theorems

Here are some general results that we now have the tools to prove.

- $(f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(h)) \Rightarrow f \in \mathcal{O}(h)$.

Intuition: If f grows no faster than g , and g grows no faster than h , then f must grow no faster than h .

Some Theorems

Here are some general results that we now have the tools to prove.

- $(f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(h)) \Rightarrow f \in \mathcal{O}(h)$.

Intuition: If f grows no faster than g , and g grows no faster than h , then f must grow no faster than h.

- $g \in \Omega(f) \Leftrightarrow f \in \mathcal{O}(g)$.

Intuition: if f grows no faster than g, then g grows no slower than f.

Some Theorems

Here are some general results that we now have the tools to prove.

- $(f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(h)) \Rightarrow f \in \mathcal{O}(h)$.

Intuition: If f grows no faster than g , and g grows no faster than h , then f must grow no faster than h.

- $g \in \Omega(f) \Leftrightarrow f \in \mathcal{O}(g)$.

Intuition: if f grows no faster than g , then g grows no slower than f .

- $g \in \Theta(f) \Leftrightarrow g \in \mathcal{O}(f) \wedge g \in \Omega(f)$.

Intuition: g grows at the same rate as f. f is both an upper bound and a lower bound on g .

Theorem 1

Theorem

For any functions $f, g, h: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, we have $(f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(h)) \Rightarrow f \in \mathcal{O}(h)$.

Proof:

Assume $f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(h)$.
So $f \in \mathcal{O}(g)$.
So $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n>B \Rightarrow f(n) \leqslant c g(n)$. \# by def'n of $f \in \mathcal{O}(g)$
Let $c_{g} \in \mathbb{R}^{+}, B_{g} \in \mathbb{N}$ be such that $\forall n \in \mathbb{N}, n \geqslant B_{g} \Rightarrow f(n) \leqslant c_{g} g(n)$.
So $g \in \mathcal{O}(h)$.
So $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \leqslant c h(n)$. \# by def'n of $g \in \mathcal{O}(h)$
Let $c_{h} \in \mathbb{R}^{+}, B_{h} \in \mathbb{N}$ be such that $\forall n \in \mathbb{N}, n \geqslant B_{h} \Rightarrow g(n) \leqslant c_{h} h(n)$.
Let $c^{\prime}=c_{g} c_{h}$. Let $B^{\prime}=\max \left(B_{g}, B_{h}\right)$.
Then, $c^{\prime} \in \mathbb{R}^{+}$(because $c_{g}, c_{h} \in \mathbb{R}^{+}$) and $B^{\prime} \in \mathbb{N}$ (because $B_{g}, B_{h} \in \mathbb{N}$).
Assume $n \in \mathbb{N}$ and $n \geqslant B^{\prime}$.
Then $n \geqslant B_{h}$ (by definition of \max), so $g(n) \leqslant c_{h} h(n)$.
Then $n \geqslant B_{g}$ (by definition of max), so $f(n) \leqslant c_{g} g(n) \leqslant c_{g} c_{h} h(n)$.
So $f(n) \leqslant c^{\prime} h(n)$.
Hence, $\forall n \in \mathbb{N}, n \geqslant B^{\prime} \Rightarrow f(n) \leqslant c^{\prime} h(n)$.
Therefore, $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow f(n) \leqslant \operatorname{ch}(n)$.
So $f \in \mathcal{O}(g)$, by definition.

Theorem 2

Theorem

For any functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, we have $g \in \Omega(f) \Leftrightarrow f \in \mathcal{O}(g)$.

Proof:

```
g}\in\Omega(f
    \Longleftrightarrow\existsc\in\mp@subsup{\mathbb{R}}{}{+},\existsB\in\mathbb{N},\foralln\in\mathbb{N},n\geqslantB=>g(n)\geqslantcf(n)(by definition)
    \Longleftrightarrow\exists\mp@subsup{c}{}{\prime}\in\mp@subsup{\mathbb{R}}{}{+},\exists\mp@subsup{B}{}{\prime}\in\mathbb{N},\foralln\in\mathbb{N},n\geqslant\mp@subsup{B}{}{\prime}=>f(n)\leqslant\mp@subsup{c}{}{\prime}g(n)
(letting }\mp@subsup{c}{}{\prime}=1/c\mathrm{ and }\mp@subsup{B}{}{\prime}=B\mathrm{ )
```

 \(\Longleftrightarrow f \in \mathcal{O}(g)\) (by definition)

Theorem 3

Theorem

For any functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, we have $g \in \Theta(f) \Leftrightarrow g \in \mathcal{O}(f) \wedge g \in \Omega(f)$.

Proof:

```
\(g \in \Theta(f)\)
    \(\Leftrightarrow\) (by definition)
        \(\exists c_{1} \in \mathbb{R}^{+}, \exists c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow c_{1} f(n) \leqslant g(n) \leqslant c_{2} f(n)\).
    \(\Leftrightarrow\) (combined inequality, and \(B=\max \left(B_{1}, B_{2}\right)\) )
        \(\left(\exists c_{1} \in \mathbb{R}^{+}, \exists B_{1} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B_{1} \Rightarrow g(n) \geqslant c_{1} f(n)\right) \wedge\)
        \(\left(\exists c_{2} \in \mathbb{R}^{+}, \exists B_{2} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B_{2} \Rightarrow g(n) \leqslant c_{2} f(n)\right)\)
    \(\Leftrightarrow\) (by definition)
    \(g \in \Omega(f) \wedge g \in \mathcal{O}(f)\)
```


Theorem 4

Corollary: For any functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, we have $g \in \Theta(f) \Leftrightarrow f \in \Theta(g)$.
Proof:

$$
\begin{aligned}
& g \in \Theta(f) \\
& \Longleftrightarrow g \in \mathcal{O}(f) \wedge g \in \Omega(f) \\
& \Longleftrightarrow g \in \mathcal{O}(f) \wedge f \in \mathcal{O}(g) \\
& \Longleftrightarrow f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(f) \\
& \Longleftrightarrow f \in \mathcal{O}(g) \wedge f \in \Omega(g) \\
& \Longleftrightarrow f \in \Theta(g)
\end{aligned}
$$

(by 3)
(by 2)
(by commutativity of \wedge)
(by 2)
(by 3)

[^0]: ${ }^{1}$ Applying l'Hôpital's Rule, $\lim _{n \rightarrow \infty} \frac{2^{n}}{n}=\lim _{n \rightarrow \infty} \frac{\ln (2) \cdot 2^{n}}{1}=\infty$.

