Asymptotic notation

- \mathcal{O}
- Ω
- Θ

Big-O Notation

Here is a precise definition of "The set of functions that are eventually no more than f, to within a constant factor":

Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$ (i.e., any function mapping naturals to nonnegative reals), let

$$
\mathcal{O}(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \leqslant c f(n)\right\} .
$$

$g \in \mathcal{O}(f)$ means that " g grows no faster than f ". Equivalently, " f is an upper bound for g ".
\mathbb{R}^{+}: the set of positive real numbers

\mathcal{O} Proof Example

Suppose: $g(n)=3 n^{2}+2$ and $f(n)=n^{2}$
Then $g \in \mathcal{O}(f)$.
To be more precise, we need to prove the statement

$$
\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 3 n^{2}+2 \leqslant c n^{2}
$$

Find some c and B that "work" in order to prove the theorem.

Prove: $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 3 n^{2}+2 \leqslant c n^{2}$

Idea:

Finding c means finding a factor that will scale n^{2} up to the size of $3 n^{2}+2$. Setting $c=3$ almost works, but there's that annoying additional term 2. Certainly $3 n^{2}+2<4 n^{2}$ so long as $n \geqslant 2$, since $n \geqslant 2 \Rightarrow n^{2}>2$. So pick $c=4$ and $B=2$

Prove: $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 3 n^{2}+2 \leqslant c n^{2}$

Idea:

Finding c means finding a factor that will scale n^{2} up to the size of $3 n^{2}+2$. Setting $c=3$ almost works, but there's that annoying additional term 2. Certainly $3 n^{2}+2<4 n^{2}$ so long as $n \geqslant 2$, since $n \geqslant 2 \Rightarrow n^{2}>2$. So pick $c=4$ and $B=2$

Let $c^{\prime}=4$ and $B^{\prime}=2$.
Then $c^{\prime} \in \mathbb{R}^{+}$and $B^{\prime} \in \mathbb{N}$.
Assume $n \in \mathbb{N}$ and $n \geqslant B^{\prime}$. \# direct proof for an arbitrary natural number
Then $n^{2} \geqslant B^{\prime 2}=4$. \# squaring is monotonic on natural numbers
Then $n^{2} \geqslant 2$.
Then $3 n^{2}+n^{2} \geqslant 3 n^{2}+2$. \# adding $3 n^{2}$ to both sides of the inequality
Then $3 n^{2}+2 \leqslant 4 n^{2}=c^{\prime} n^{2} \quad$ \# re-write
Then $\forall n \in \mathbb{N}, n \geqslant B^{\prime} \Rightarrow 3 n^{2}+2 \leqslant c^{\prime} n^{2} \quad$ \# introduce \forall and \Rightarrow
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 3 n^{2}+2 \leqslant c n^{2} . \quad$ \# introduce \exists (twice)
So, by definition, $g \in \mathcal{O}(f)$.

Ω, Θ Notation

By analogy with $\mathcal{O}(f)$, consider two other definitions:
Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, let

$$
\Omega(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \geqslant c f(n)\right\} .
$$

" $g \in \Omega(f)$ " expresses the concept that " g grows at least as fast as f "; f is a lower bound on g.

Ω, Θ Notation

By analogy with $\mathcal{O}(f)$, consider two other definitions:
Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, let

$$
\Omega(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \geqslant c f(n)\right\} .
$$

" $g \in \Omega(f)$ " expresses the concept that " g grows at least as fast as f "; f is a lower bound on g.

Definition: For any function $f: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0}$, let

$$
\begin{aligned}
& \Theta(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{\geqslant 0} \mid \exists c_{1} \in \mathbb{R}^{+}, \exists c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow\right. \\
& \left.\quad c_{1} f(n) \leqslant g(n) \leqslant c_{2} f(n)\right\} .
\end{aligned}
$$

" $g \in \Theta(f)$ " expresses the concept that " g grows at the same rate as f ". f is a tight bound for g, or f is both an upper bound and a lower bound on g.

Next week: more complex examples

Another \mathcal{O} Proof

Prove that $2 n^{3}-5 n^{4}+7 n^{6}$ is in $\mathcal{O}\left(n^{2}-4 n^{5}+6 n^{8}\right)$

We begin with ...

Let $c^{\prime}=$ \qquad . Then $c^{\prime} \in \mathbb{R}^{+}$.
Let $B^{\prime}=$ \qquad . Then $B^{\prime} \in \mathbb{N}$.
Assume $n \in \mathbb{N}$ and $n \geqslant B^{\prime}$. \# arbitrary natural number and antecedent
Then $2 n^{3}-5 n^{4}+7 n^{6} \leqslant \ldots \leqslant c^{\prime}\left(n^{2}-4 n^{5}+6 n^{8}\right)$.
Then $\forall n \in \mathbb{N}, n \geqslant B^{\prime} \Rightarrow 2 n^{3}-5 n^{4}+7 n^{6} \leqslant c^{\prime}\left(n^{2}-4 n^{5}+6 n^{8}\right)$. \# introduce \Rightarrow and \forall
Hence, $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 2 n^{3}-5 n^{4}+7 n^{6} \leqslant c\left(n^{2}-4 n^{5}+6 n^{8}\right)$. \# introduce \exists

Another \mathcal{O} Proof

Prove that $2 n^{3}-5 n^{4}+7 n^{6} \in \mathcal{O}\left(n^{2}-4 n^{5}+6 n^{8}\right)$

To fill in the

we try to form a chain of inequalities, working from both ends, simplifying the expressions:

$$
\begin{aligned}
2 n^{3}-5 n^{4}+7 n^{6} & \leqslant 2 n^{3}+7 n^{6} \quad\left(\text { drop }-5 n^{4}\right) \\
& \leqslant 2 n^{6}+7 n^{6} \quad\left(\text { increase } n^{3} \text { to } n^{6}\right) \\
& =9 n^{6} \leqslant 9 n^{8} \quad(\text { simpler to compare }) \\
& =2(9 / 2) n^{8} \quad\left(\text { choose } c^{\prime}=9 / 2\right) \\
& =2 c n^{8} \\
& \left.=c^{\prime}\left(-4 n^{8}+6 n^{8}\right) \quad \text { (bottom up: decrease }-4 n^{5} \text { to }-4 n^{8}\right) \\
& \leqslant c^{\prime}\left(-4 n^{5}+6 n^{8}\right) \quad\left(\text { bottom up: drop } n^{2}\right) \\
& \leqslant c^{\prime}\left(n^{2}-4 n^{5}+6 n^{8}\right)
\end{aligned}
$$

We never needed to restrict n for $n \in \mathbb{N}(n \geqslant 0)$, so we can fill in $c^{\prime}=9 / 2, B^{\prime}=0$, and complete the proof.

