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“The worst-case runtime of bubble-sort is in O(n²).” 

“I can sort it in n log n time.” 

“That problem cannot be solved in polynomial time.” 

“That’s too slow, make it linear-time.” 

Computer scientists talk like… 



Sorting Algorithms Comparison 
• Bubble sort 
• Merge sort 
 
See demo at: http://www.sorting-algorithms.com/ 
 
Observations: 

²  merge is faster than bubble 

²  with larger input size, the advantage of merge over 
bubble becomes larger 
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Runtime Observation 
 
 
 

When input size grows from 20 to 40… 
•  “runtime” of merge: roughly doubled 

•  “runtime” of bubble: roughly quadrupled 

Algorithm/Size 20 (s) 40 (s) 
Bubble 8.6 38.0 
Merge 5.0 11.2 
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Runtime means? 
²  It does NOT mean how many seconds spent on running 

the algorithm. 

²  It means the number of steps taken by the algorithm. 

Thus, the runtime is independent from the hardware 
where you run the algorithm; but, only depends on the 
algorithm itself. 

You can run bubble on a super-computer, and run merge 
on a mechanical watch! That has nothing to do with the fact 
that merge is a faster sorting algorithm than bubble. 
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Runtime Description 
 
 
 
The runtime described in number of steps, as a function of 

n (size of input): 

²  Bubble: could be 0.5n² (steps) 

²  Merge: could be n log n (steps) 

But, we don’t really care about the number of steps... 
 

Algorithm/Size 20 (steps) 40 (steps) 
Bubble 200 800 
Merge 120 295 
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Size n & step numbers? 
We don’t care about the absolute number of steps, but 

we care about:  

when input size doubles, the runtime quadruples. 

In other words, 0.5n² and 700n² are no different! 

What we really care is that: 

² how the number of steps grows as the size of input 
increases. 

Constant factors do NOT matter! 
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Constant factor, steps grow? 

 
Constant factor does not matter, when it comes to growth! 
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Large input sizes 
We care about algorithm design when the input size n is 
very large. 

² n² and n²+n+2 are no different, because when n is really 
large, n+2 is negligible compared to n²  

² Only the highest-order term matters! 
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Low-order terms do not matter! 
 

Low-order terms 



Runtime evaluation: 
➔  we count the number of steps 
➔  constant factors don’t matter 
➔  only the highest-order term matters 
 
Thus, the followings functions are of the same class: 

We call this: O(n²) 

Summary of Runtime 



Big-O Notation 
O(n²) is an asymptotic notation 
 
O( f(n) ) is the asymptotic upper-bound, which means that 
a set of functions grow no faster than f(n). 
 
For example, when we say: 
 
It means that: 
 

 



Asymptotic Notations 
More notations to be introduced later: 
 
v O( f(n) ) : the asymptotic upper-bound 

v Ω( f(n) ): the asymptotic lower-bound 
 
v Θ( f(n) ): the asymptotic tight-bound 
 
Precise definitions of O, Ω, and Θ to be given in next class 
 



Asymptotic notations: abstraction 

Asymptotic notations are a simplification of the “actual” 
runtime. 

²  It does not tell the whole story about how fast a program 
runs in reality.  

In real-world applications, constant factor matters! hardware 
matters! implementation matters! 

²  This simplification makes possible the development of 
the whole theory of computational complexity.  

IMPORTANT idea! 





Quick note 
In CSC165, we use asymptotic notations such as O(n²), 

and sometimes, we use the exact forms, such as  
3n² + 2n to be more precise. It depends on the problem 

requirements. 



ANALYZE THE TIME COMPLEXITY  
OF A PROGRAM 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

What’s the runtime of this 
program? 

 
 
Can’t say yet, it depends on 

the input (A, x). 

Linear Search 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

Count time complexity 
 (# of lines of code executed) 
 
  LS([2, 4, 6, 8], 4) 

tLS([2, 4, 6, 8], 4) = 7 

Linear Search 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

Count time complexity  
LS([2, 4, 6, 8], 6) 

tLS([2, 4, 6, 8], 6) = 10 

Linear Search 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

What is the runtime of 
LS(A,	  x)?	  

	  
if the first index where x is 

found is k  
i.e., A[k] == x 
	  tLS(A, x) = 1 + 3(k+1) 
             = 3k + 4 

tLS([2, 4, 6, 8], 6) = 10 

Linear Search 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

Count time complexity  
LS([2, 4, 6, 8], 99) 

tLS([2, 4, 6, 8], 99) = 15 

Linear Search 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

what is the runtime of  
LS(A, x)? 
 
if x is not in A at all  
let n be the size of A 

tLS(A, x) = 1 + 3n + 2 
             = 3n + 3 

Linear Search 

tLS([2, 4, 6, 8], 99) = 15 



Takeaway 
²  program runtime varies with inputs 

²  among inputs of a given size, there is a worst case in 
which the runtime is the longest 



Worst-case time Complexity 



def	  LS(A,	  x):	  
”””	  Return	  index	  i,	  x	  ==	  A[i].	  
	  	  	  	  Otherwise,	  return	  -‐1	  ”””	  
1.  i	  =	  0	  
2.  while	  i	  <	  len(A):	  
3.  	  	  	  	  if	  A[i]	  ==	  x:	  
4.  	  	  	  	  	  	  	  	  return	  i	  
5.  	  	  	  	  i	  =	  i	  +	  1	  
6.  return	  -‐1	  

What is the worst-case 
running time of LS(A, x), 

given that len(A) == n ? 

WLS(n) = 1 + 3n + 2 
            = 3n + 3 

Worst-case: x is not in  A at all! 

Linear Search 

tLS([2, 4, 6, 8], 99) = 15 



² Worst-case: performance in the worst situation, what we 
typically do in CSC165, and in CSC236 

² Best-case: performance in the best situation, not very 
interesting, rarely studied 

² Average-case: the expected performance under random 
inputs following certain probability distribution, will study in 
CSC263 



Next class 

➔  More on asymptotic notations & definitions 

➔  Algorithm analysis  


