
CHAPTER 4
ALGORITHM ANALYSIS AND
ASYMPTOTIC NOTATION
 Feb 22, 2015

Lisa Yan

“The worst-case runtime of bubble-sort is in O(n²).”

“I can sort it in n log n time.”

“That problem cannot be solved in polynomial time.”

“That’s too slow, make it linear-time.”

Computer scientists talk like…

Sorting Algorithms Comparison
• Bubble sort
• Merge sort

See demo at: http://www.sorting-algorithms.com/

Observations:

²  merge is faster than bubble

²  with larger input size, the advantage of merge over
bubble becomes larger

3

Runtime Observation

When input size grows from 20 to 40…
•  “runtime” of merge: roughly doubled

•  “runtime” of bubble: roughly quadrupled

Algorithm/Size 20 (s) 40 (s)
Bubble 8.6 38.0
Merge 5.0 11.2

4

Runtime means?
²  It does NOT mean how many seconds spent on running

the algorithm.

²  It means the number of steps taken by the algorithm.

Thus, the runtime is independent from the hardware
where you run the algorithm; but, only depends on the
algorithm itself.

You can run bubble on a super-computer, and run merge
on a mechanical watch! That has nothing to do with the fact
that merge is a faster sorting algorithm than bubble.

5

Runtime Description

The runtime described in number of steps, as a function of

n (size of input):

²  Bubble: could be 0.5n² (steps)

²  Merge: could be n log n (steps)

But, we don’t really care about the number of steps...

Algorithm/Size 20 (steps) 40 (steps)
Bubble 200 800
Merge 120 295

6

Size n & step numbers?
We don’t care about the absolute number of steps, but

we care about:

when input size doubles, the runtime quadruples.

In other words, 0.5n² and 700n² are no different!

What we really care is that:

² how the number of steps grows as the size of input
increases.

Constant factors do NOT matter!

7

Constant factor, steps grow?

Constant factor does not matter, when it comes to growth!

8

Large input sizes
We care about algorithm design when the input size n is
very large.

² n² and n²+n+2 are no different, because when n is really
large, n+2 is negligible compared to n²

² Only the highest-order term matters!

9

Low-order terms do not matter!

Low-order terms

Runtime evaluation:
➔  we count the number of steps
➔  constant factors don’t matter
➔  only the highest-order term matters

Thus, the followings functions are of the same class:

We call this: O(n²)

Summary of Runtime

Big-O Notation
O(n²) is an asymptotic notation

O(f(n)) is the asymptotic upper-bound, which means that
a set of functions grow no faster than f(n).

For example, when we say:

It means that:

Asymptotic Notations
More notations to be introduced later:

v O(f(n)) : the asymptotic upper-bound

v Ω(f(n)): the asymptotic lower-bound

v Θ(f(n)): the asymptotic tight-bound

Precise definitions of O, Ω, and Θ to be given in next class

Asymptotic notations: abstraction

Asymptotic notations are a simplification of the “actual”
runtime.

²  It does not tell the whole story about how fast a program
runs in reality.

In real-world applications, constant factor matters! hardware
matters! implementation matters!

²  This simplification makes possible the development of
the whole theory of computational complexity.

IMPORTANT idea!

Quick note
In CSC165, we use asymptotic notations such as O(n²),

and sometimes, we use the exact forms, such as
3n² + 2n to be more precise. It depends on the problem

requirements.

ANALYZE THE TIME COMPLEXITY
OF A PROGRAM

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

What’s the runtime of this
program?

Can’t say yet, it depends on

the input (A, x).

Linear Search

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

Count time complexity
 (# of lines of code executed)

 LS([2, 4, 6, 8], 4)

tLS([2, 4, 6, 8], 4) = 7

Linear Search

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

Count time complexity
LS([2, 4, 6, 8], 6)

tLS([2, 4, 6, 8], 6) = 10

Linear Search

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

What is the runtime of
LS(A,	 x)?	

	
if the first index where x is

found is k
i.e., A[k] == x
	 tLS(A, x) = 1 + 3(k+1)
 = 3k + 4

tLS([2, 4, 6, 8], 6) = 10

Linear Search

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

Count time complexity
LS([2, 4, 6, 8], 99)

tLS([2, 4, 6, 8], 99) = 15

Linear Search

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

what is the runtime of
LS(A, x)?

if x is not in A at all
let n be the size of A

tLS(A, x) = 1 + 3n + 2
 = 3n + 3

Linear Search

tLS([2, 4, 6, 8], 99) = 15

Takeaway
²  program runtime varies with inputs

²  among inputs of a given size, there is a worst case in
which the runtime is the longest

Worst-case time Complexity

def	 LS(A,	 x):	
”””	 Return	 index	 i,	 x	 ==	 A[i].	
	 	 	 	 Otherwise,	 return	 -‐1	 ”””	
1.  i	 =	 0	
2.  while	 i	 <	 len(A):	
3.  	 	 	 	 if	 A[i]	 ==	 x:	
4.  	 	 	 	 	 	 	 	 return	 i	
5.  	 	 	 	 i	 =	 i	 +	 1	
6.  return	 -‐1	

What is the worst-case
running time of LS(A, x),

given that len(A) == n ?

WLS(n) = 1 + 3n + 2
 = 3n + 3

Worst-case: x is not in A at all!

Linear Search

tLS([2, 4, 6, 8], 99) = 15

² Worst-case: performance in the worst situation, what we
typically do in CSC165, and in CSC236

² Best-case: performance in the best situation, not very
interesting, rarely studied

² Average-case: the expected performance under random
inputs following certain probability distribution, will study in
CSC263

Next class

➔  More on asymptotic notations & definitions

➔  Algorithm analysis

