
CSC165, Winter 2015

Assignment 3

Sample Solutions

IMPORTANT: You must use the proof structures and format of this course. Otherwise, you won’t get full
mark even if your answers are correct.

1. Prove or disprove each of the following claims.

You may assume that f : N→ R≥0 and g : N→ R≥0.

(a) Let f(n) = nbn2 c, and g(n) = n2 − 2n + 1.

Then f ∈ Θ(g).

Solution:

Let c2 = 1, B2 = 4. Then c2 ∈ R+ and B2 ∈ N.
Assume n is a typical integer and n ≥ B2.

Then n2 − 4n + 2 ≥ 0. # n ≥ B2 ≥ 4
Then 2n2 − 4n + 2 ≥ n2. # add n2 to both sides
Then n2 − 2n + 1 ≥ n2/2. # divide both sides by 2
Then n2 − 2n + 1 ≥ nbn2 c. # since n2/2 ≥ nbn2 c
Then c2g(n) ≥ f(n). # c2 = 1

Then ∀n ∈ N, n ≥ B2 ⇒ f(n) ≤ c2g(n). # introduce ∀ and =⇒
Let c1 = 1/3, B1 = 3. Then c1 ∈ R+ and B1 ∈ N.
Assume n is a typical integer and n ≥ B1.

Then n2 + 4n ≥ 14. # n ≥ B1 ≥ 3
Then 3n2 − 12 ≥ 2n2 − 4n + 2. # add 2n2 − 4n− 12 to both sides

Then n2

2 − 2 ≥ n2−2n+1
3 . # divide both sides by 6

Then nbn2 c ≥
n2−2n+1

3 . # since nbn2 c ≥
n2

2 − 2
Then c1g(n) ≤ f(n). # c1 = 1/3

Then ∀n ∈ N, n ≥ B1 ⇒ c1g(n) ≤ f(n). # introduce ∀ and =⇒
Let B = max(B1, B2).
Then ∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ c1g(n) ≤ f(n) ≤ c2g(n). # introduce ∃

(b) Let f(n) = n4 + 3n3 + n2 − 1, and g(n) = n5 − 8n3 − n.

Then f ∈ Θ(g).

Solution: f is not in Θ(g) since f is not in Ω(g).

Assume f ∈ Ω(g). # to derive contradiction

Then ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ f(n)
g(n) ≥ c. # by definition of Ω

Also, ∀c ∈ R+,∃n′ ∈ N,∀n ∈ N, n ≥ n′ ⇒ f(n)
g(n) < c. # by definition of limits and since

limn→∞
f(n)
g(n) = 0

Contradiction! # f(n)
g(n) cannot be satisfy the above two statements at the same time
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Then f 6∈ Ω(g). # assuming otherwise leads to contradiction

(c) Let f(n) = nn, and g(n) = nn−5.

Then f ∈ Θ(g).

Solution: f is not in Θ(g) since f is not in O(g).

Assume c ∈ R+, assume B ∈ N. # arbitrary values

Then ∃n′ ∈ N,∀n ∈ N, n ≥ n′ =⇒ f(n) > c.g(n). # definition of limn→∞ f(n)/g(n) =
∞
Let n1 be such that ∀n ∈ N, n ≥ n1 =⇒ f(n) > c.g(n). # instantiate n′

Let n0 = max(B,n1). Then n0 ∈ N.

Then n0 ≥ B. # by definition of max

Then f(n0) > cg(n0). # by the assumption above f(n) > cg(n), since n0 ≥ n1

Then n0 ≥ B ∧ f(n0) ≥ cg(n0). # introduce ∧
Then ∃n ∈ N, n ≥ B ∧ f(n) > cg(n). # introduce ∃

Then ∀c ∈ R,∀B ∈ N,∃n ∈ N, n ≥ B ∧ f(n) > cg(n). # introduce ∀
Then f 6∈ O(g). # the above statement is the negation of the definition of O
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2. Prove a tight bound on the worst-case running time of each of the following algorithms

(a) def mystery1(L):

""" L is a non-empty list of length len(L) = n. """

if L[0] is even:

i=0

while i <n^2:

L[0] = L[0] + L[i/n]

i=i+1

else:

i=0

while i < n-1:

L[0] = L[0] - L[i]

i=i+1

Solution: See the sample solutions to Tutorial 7.

(b) def mystery2(L):

""" L is a non-empty list of length len(L) = n. """

step = 1

index = 0

while index < len(L):

index = index + step

step = step + 1

Solution:

Intuition: The number of iterations of the loop on any input L of length n will depend on the
value of the variable index. And the value of index depends on the value of variable step. The
variable step increases by 1 on each iteration of the loop. The variable step takes on the values:

step = 1→ 2→ 3→ 4→ ...

The variable index takes on the values:

index = 0→ 0 + 1→ 0 + 1 + 2→ 0 + 1 + 2 + 3→ ...→ 0 + 1 + 2 + 3 + ... + k → ...

The value of index after the kth iteration of the loop is 0 + 1 + 2 + 3 + ... + k = k(k + 1)/2.

The number of iterations of the loop will be m, where m is such that m(m + 1)/2 > n (to get
out of the loop) while (m− 1)((m− 1) + 1)/2 < n. (To have a mth iteration of the loop, we need
(m− 1)((m− 1) + 1)/2 < n or (m− 1)m/2 < n) So we have m(m− 1) < 2n and m(m+ 1) > 2n.
Hence, there will be m ≈ d

√
2ne iterations. (There wont be more than d

√
2ne iterations. There

wont be fewer than b
√

2nc iterations.) We can justify this last conclusion more rigorously.

Consider the expression m(m − 1). We want m(m − 1) < 2n. Suppose m = d
√

2ne + 1. Then,
considering m(m− 1), we have

(d
√

2ne+ 1)((d
√

2ne+ 1)− 1) = (d
√

2ne+ 1)(d
√

2ne)

= (d
√

2ne)2 + (d
√

2ne)

≥ (
√

2n)2 + (
√

2n)

= 2n + (
√

2n)

> 2n
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Hence, m ≤ d
√

2ne since otherwise m(m− 1) 6< 2n.

Similarly, we want m(m + 1) ≥ 2n. Suppose m = b
√

2nc − 1. Then

(b
√

2nc − 1)((b
√

2nc − 1) + 1) = (b
√

2nc − 1)(b
√

2nc)

= (b
√

2nc)2 − (b
√

2nc)

≤ (
√

2n)2 − (
√

2n)

= 2n− (
√

2n)

< 2n

Hence, m ≥ b
√

2nc , since otherwise m(m + 1) 6> 2n.

Since the number of steps per iteration is constant, and the number of steps performed only
depends on the length of the list L, we have that the worst-case runtime of the algorithm is
Θ(
√
n), where n = len(L).

To prove this conclusion in a detailed way, we need to put the above arguments in a formal proof
that follows the usual structure.

Let I be the set of possible inputs to the algorithm. That is, I is the set of nonempty lists of
numbers.

Let c0 = 4
√

2 + 7 and B0 = 1.
Then c0 ∈ R+ and B0 ∈ N.
Assume L ∈ I is an arbitrary list of length n ≥ B0

Then the algorithm executes 4 statements for each iteration of the loop (lines 4,5,6,7),
and loops for at most d

√
2ne iterations.

In addition, the algorithm has 2 initialization statements and the last evaluation of the
loop condition.
Then,

t(L) ≤ 4d
√

2ne+ 3

≤ 4(
√

2n + 1) + 3

= 4
√

2n + 7

≤ 4
√

2n + 7
√
n

≤ (4
√

2 + 7)
√
n

≤ c0
√
n

Then ∀L ∈ I, size(L) ≥ B0 =⇒ t(L) ≤ c0
√
n. # size(L) = n

Then ∃c ∈ R+,∃B ∈ N,∀L ∈ I, size(L) ≥ B =⇒ t(L) ≤ c
√
n.

Then T (n) ∈ O(
√
n).

Let c0 =
√

2 and B0 = 1.
Then c0 ∈ R+ and B0 ∈ N.
Assume L ∈ I is an arbitrary list of length n ≥ B0

Let L0 = [1, 2, 3, ..., n]. Then L0 ∈ I and size(L0) = n. Then the algorithm executes 2
steps followed by at least b

√
2nc iterations of at least one statement. Then,

t(L0) ≥ b
√

2nc+ 2

>
√

2n

= c0
√
n

Then ∃L ∈ I, size(L) = n ∧ t(L) ≥ c0
√
n.
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Then ∀n ∈ N, n ≥ B0 =⇒ ∃L ∈ I, size(L) = n ∧ t(L) ≥ c0
√
n.

Then ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B =⇒ ∃L ∈ I, size(L) = n ∧ t(L) ≥ c
√
n.

Then T (n) ∈ Ω(
√
n).

Then T (n) ∈ Θ(
√
n).

3. Prove each of the following statements by induction (in all parts, assume that n ∈ N)

(a) 1 + 6 + 11 + ... + (5n− 4) = n(5n−3)
2 , n ≥ 1.

Solution: Let P(n) denotes 1 + 6 + 11 + ... + (5n− 4) = n(5n−3)
2 .

Prove P (1): (5n− 4) = 1 and n(5n−3)
2 = 1(5−3)

2 = 1. So P (1) is true.

Prove ∀n ∈ N, P (n) =⇒ P (n + 1):
Assume n ∈ N. # arbitrary natural number

Assume P (n), that is 1 + 6 + 11 + 16 + ... + (5n− 4) = n(5n−3)
2 . # antecedent

Then 1 + 6 + 11 + ... + (5n− 4) + (5(n + 1)− 4) = n(5n−3)
2 + (5(n + 1)− 4). # add

(5(n + 1)− 4) to both sides

Then 1 + 6 + 11 + ... + (5n− 4) + (5(n + 1)− 4) = 5n2−3n+10n+10−8
2 . # algebra

Then 1 + 6 + 11 + ... + (5n− 4) + (5(n + 1)− 4) = 5n2−7n+2
2 . # algebra

Then 1 + 6 + 11 + ... + (5n− 4) + (5(n + 1)− 4) = 5n2−7n+2
2 . # algebra

Also we have (n + 1)(5(n + 1)− 3) = 5n2 + 5n− 3n + 5n + 5− 3. # algebra

So 1+6+11+ ...+(5n−4)+(5(n+1)−4) = (n+1)(5(n+1)−3)
2 . # by the two previous

lines
Then P (n + 1). # by the previous line

Then P (n) =⇒ P (n + 1). # introduce =⇒
Then ∀n ∈ N, P (n) =⇒ P (n + 1). # introduce ∀

(b) For all natural numbers n ≥ 3,

43 + 44 + 45 + ... + 4n = 4(4n−16)
3 .

Solution: Let P(n) denotes 43 + 44 + 45 + ... + 4n = 4(4n−16)
3 .

Prove P (3): 43 = 64 and 4(43−16)
3 = 4(64−16)

3 = 64. So P (3) is true.

Prove ∀n ∈ N, P (n) =⇒ P (n + 1):
Assume n ∈ N, n ≥ 3. # arbitrary natural number

Assume P (n), that is 43 + 44 + 45 + ... + 4n = 4(4n−16)
3 . # antecedent

Then 43 + 44 + 45 + ... + 4n + 4n+1 = 4(4n−16)
3 + 4n+1. # add 4n+1 to both sides

Then 43 + 44 + 45 + ... + 4n + 4n+1 = 4n+1+3∗4n+1−4∗16)
3 . # algebra

Then 43 + 44 + 45 + ... + 4n + 4n+1 = 4(4n+1−16)
3 . # algebra

Then P (n + 1). # by the previous line
Then P (n) =⇒ P (n + 1). # introduce =⇒

Then ∀n ∈ N, P (n) =⇒ P (n + 1). # introduce ∀

(c)
√
n < 1√

1
+ 1√

2
+ ... + 1√

n
, n ≥ 2.

Solution:

First note that (
√
n + 1−

√
n)(
√
n + 1 +

√
n) = (

√
n + 1)2 + (

√
n)2 = (n+ 1)−n = 1. Therefore,√

n + 1−
√
n = 1√

n+1+
√
n

, and so
√
n + 1 =

√
n + 1√

n+1+
√
n

.

Let P(n) denotes
√
n < 1√

1
+ 1√

2
+ ... + 1√

n
.
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Prove P (2):
√

2 ≈ 1.4 and 1√
1

+ 1√
2
≈ 1.7, so P (2) is true.

Prove ∀n ∈ N, P (n) =⇒ P (n + 1):
Assume n ∈ N, n ≥ 2. # arbitrary natural number

Assume P (n), that is
√
n < 1√

1
+ 1√

2
+ ... + 1√

n
. # antecedent

Then
√
n + 1√

n+1+
√
n
< 1√

1
+ 1√

2
+ ... + 1√

n
+ 1√

n+1+
√
n

. # add 1√
n+1+

√
n

to both

sides
Then

√
n + 1 < 1√

1
+ 1√

2
+ ... + 1√

n
+ 1√

n+1+
√
n

. #
√
n + 1 =

√
n + 1√

n+1+
√
n

Then
√
n + 1 < 1√

1
+ 1√

2
+ ... + 1√

n
+ 1√

n+1
. #

√
n + 1 <

√
n + 1 +

√
n, so

1√
n+1

> 1√
n+1+

√
n

Then P (n + 1). # by the previous line
Then P (n) =⇒ P (n + 1). # introduce =⇒

Then ∀n ∈ N, P (n) =⇒ P (n + 1). # introduce ∀
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