CSC165, Winter 2015 Assignment 3 Sample Solutions

IMPORTANT: You **must** use the proof structures and format of this course. Otherwise, you won't get full mark even if your answers are correct.

1. **Prove** or **disprove** each of the following claims.

You may assume that $f : \mathbb{N} \to \mathbb{R}^{\geq 0}$ and $g : \mathbb{N} \to \mathbb{R}^{\geq 0}$.

(a) Let $f(n) = n \lfloor \frac{n}{2} \rfloor$, and $g(n) = n^2 - 2n + 1$. Then $f \in \Theta(g)$. Solution: Let $c_2 = 1$, $B_2 = 4$. Then $c_2 \in \mathbb{R}^+$ and $B_2 \in \mathbb{N}$. Assume n is a typical integer and $n \ge B_2$. Then $n^2 - 4n + 2 \ge 0$. $\# n \ge B_2 \ge 4$ Then $2n^2 - 4n + 2 \ge n^2$. # add n^2 to both sides Then $n^2 - 2n + 1 \ge n^2/2$. # divide both sides by 2 Then $n^2 - 2n + 1 \ge n \lfloor \frac{n}{2} \rfloor$. # since $n^2/2 \ge n \lfloor \frac{n}{2} \rfloor$ Then $c_2 g(n) \ge f(n)$. $\# c_2 = 1$ Then $\forall n \in \mathbb{N}, n \ge B_2 \Rightarrow f(n) \le c_2 g(n)$. # introduce \forall and \Longrightarrow Let $c_1 = 1/3$, $B_1 = 3$. Then $c_1 \in \mathbb{R}^+$ and $B_1 \in \mathbb{N}$. Assume n is a typical integer and $n \ge B_1$. Then $n^2 + 4n \ge 14$. $\# n \ge B_1 \ge 3$ Then $3n^2 - 12 \ge 2n^2 - 4n + 2$. # add $2n^2 - 4n - 12$ to both sides Then $\frac{n^2}{2} - 2 \ge \frac{n^2 - 2n + 1}{3}$. # divide both sides by 6 Then $n\lfloor \frac{n}{2} \rfloor \ge \frac{n^2 - 2n + 1}{3}$. # since $n\lfloor \frac{n}{2} \rfloor \ge \frac{n^2}{2} - 2$ Then $c_1 \bar{g(n)} \le f(n)$. $\# c_1 = 1/3$ Then $\forall n \in \mathbb{N}, n \ge B_1 \Rightarrow c_1 g(n) \le f(n)$. # introduce \forall and \Longrightarrow Let $B = max(B_1, B_2)$. Then $\exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_1g(n) \leq f(n) \leq c_2g(n). \#$ introduce \exists (b) Let $f(n) = n^4 + 3n^3 + n^2 - 1$, and $g(n) = n^5 - 8n^3 - n$. Then $f \in \Theta(q)$. **Solution:** f is not in $\Theta(g)$ since f is not in $\Omega(g)$. Assume $f \in \Omega(g)$. # to derive contradiction Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \frac{f(n)}{g(n)} \geq c.$ # by definition of Ω Also, $\forall c \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow \frac{f(n)}{g(n)} < c.$ # by definition of limits and since $\lim_{n \to \infty} \frac{f(n)}{q(n)} = 0$ Contradiction! $\# \frac{f(n)}{q(n)}$ cannot be satisfy the above two statements at the same time

Then $f \notin \Omega(g)$. # assuming otherwise leads to contradiction

(c) Let $f(n) = n^n$, and $g(n) = n^{n-5}$.

Then $f \in \Theta(g)$.

Solution: f is not in $\Theta(g)$ since f is not in $\mathcal{O}(g)$.

Assume $c \in \mathbb{R}^+$, assume $B \in \mathbb{N}$. # arbitrary values Then $\exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n' \implies f(n) > c.g(n)$. # definition of $\lim_{n\to\infty} f(n)/g(n) = \infty$ Let n_1 be such that $\forall n \in \mathbb{N}, n \ge n_1 \implies f(n) > c.g(n)$. # instantiate n'Let $n_0 = \max(B, n_1)$. Then $n_0 \in \mathbb{N}$. Then $n_0 \ge B$. # by definition of max Then $f(n_0) > cg(n_0)$. # by the assumption above f(n) > cg(n), since $n_0 \ge n_1$ Then $n_0 \ge B \land f(n_0) \ge cg(n_0)$. # introduce \land Then $\exists n \in \mathbb{N}, n \ge B \land f(n) > cg(n)$. # introduce \exists

Then $\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land f(n) > cg(n).$ # introduce \forall Then $f \notin \mathcal{O}(g)$. # the above statement is the negation of the definition of \mathcal{O} 2. Prove a **tight bound** on the worst-case running time of each of the following algorithms

```
(a) def mystery1(L):
    """ L is a non-empty list of length len(L) = n. """
    if L[0] is even:
        i=0
        while i <n^2:
            L[0] = L[0] + L[i/n]
            i=i+1
    else:
        i=0
        while i < n-1:
        L[0] = L[0] - L[i]
        i=i+1</pre>
```

Solution: See the sample solutions to Tutorial 7.

```
(b) def mystery2(L):
```

```
""" L is a non-empty list of length len(L) = n. """
step = 1
index = 0
while index < len(L):
    index = index + step
    step = step + 1</pre>
```

Solution:

Intuition: The number of iterations of the loop on any input L of length n will depend on the value of the variable index. And the value of index depends on the value of variable step. The variable step increases by 1 on each iteration of the loop. The variable step takes on the values:

 $step = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \dots$

The variable index takes on the values:

$$index = 0 \rightarrow 0 + 1 \rightarrow 0 + 1 + 2 \rightarrow 0 + 1 + 2 + 3 \rightarrow \dots \rightarrow 0 + 1 + 2 + 3 + \dots + k \rightarrow \dots$$

The value of index after the kth iteration of the loop is 0 + 1 + 2 + 3 + ... + k = k(k+1)/2. The number of iterations of the loop will be m, where m is such that m(m+1)/2 > n (to get out of the loop) while (m-1)((m-1)+1)/2 < n. (To have a mth iteration of the loop, we need (m-1)((m-1)+1)/2 < n or (m-1)m/2 < n) So we have m(m-1) < 2n and m(m+1) > 2n. Hence, there will be $m \approx \lceil \sqrt{2n} \rceil$ iterations. (There wont be more than $\lceil \sqrt{2n} \rceil$ iterations. There wont be fewer than $\lfloor \sqrt{2n} \rfloor$ iterations.) We can justify this last conclusion more rigorously. Consider the expression m(m-1). We want m(m-1) < 2n. Suppose $m = \lceil \sqrt{2n} \rceil + 1$. Then, considering m(m-1), we have

$$\begin{split} (\lceil \sqrt{2n} \rceil + 1)((\lceil \sqrt{2n} \rceil + 1) - 1) &= (\lceil \sqrt{2n} \rceil + 1)(\lceil \sqrt{2n} \rceil) \\ &= (\lceil \sqrt{2n} \rceil)^2 + (\lceil \sqrt{2n} \rceil) \\ &\geq (\sqrt{2n})^2 + (\sqrt{2n}) \\ &= 2n + (\sqrt{2n}) \\ &> 2n \end{split}$$

Hence, $m \leq \lceil \sqrt{2n} \rceil$ since otherwise $m(m-1) \not\leq 2n$. Similarly, we want $m(m+1) \geq 2n$. Suppose $m = \lfloor \sqrt{2n} \rfloor - 1$. Then

$$(\lfloor \sqrt{2n} \rfloor - 1)((\lfloor \sqrt{2n} \rfloor - 1) + 1) = (\lfloor \sqrt{2n} \rfloor - 1)(\lfloor \sqrt{2n} \rfloor)$$
$$= (\lfloor \sqrt{2n} \rfloor)^2 - (\lfloor \sqrt{2n} \rfloor)$$
$$\leq (\sqrt{2n})^2 - (\sqrt{2n})$$
$$= 2n - (\sqrt{2n})$$
$$< 2n$$

Hence, $m \ge \lfloor \sqrt{2n} \rfloor$, since otherwise $m(m+1) \ge 2n$.

Since the number of steps per iteration is constant, and the number of steps performed only depends on the length of the list L, we have that the worst-case runtime of the algorithm is $\Theta(\sqrt{n})$, where n = len(L).

To prove this conclusion in a detailed way, we need to put the above arguments in a formal proof that follows the usual structure.

Let I be the set of possible inputs to the algorithm. That is, I is the set of nonempty lists of numbers.

Let $c_0 = 4\sqrt{2} + 7$ and $B_0 = 1$.

Then $c_0 \in \mathbb{R}^+$ and $B_0 \in \mathbb{N}$.

Assume $L \in I$ is an arbitrary list of length $n \ge B_0$

Then the algorithm executes 4 statements for each iteration of the loop (lines 4,5,6,7), and loops for at most $\lceil \sqrt{2n} \rceil$ iterations.

In addition, the algorithm has 2 initialization statements and the last evaluation of the loop condition.

Then,

$$\begin{split} t(L) &\leq 4\lceil \sqrt{2n} \rceil + 3 \\ &\leq 4(\sqrt{2n}+1) + 3 \\ &= 4\sqrt{2n} + 7 \\ &\leq 4\sqrt{2n} + 7\sqrt{n} \\ &\leq (4\sqrt{2}+7)\sqrt{n} \\ &\leq c_0\sqrt{n} \end{split}$$

Then $\forall L \in I, size(L) \geq B_0 \implies t(L) \leq c_0 \sqrt{n}. \# size(L) = n$ Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall L \in I, size(L) \geq B \implies t(L) \leq c\sqrt{n}.$ Then $T(n) \in \mathcal{O}(\sqrt{n}).$

Let $c_0 = \sqrt{2}$ and $B_0 = 1$.

Then $c_0 \in \mathbb{R}^+$ and $B_0 \in \mathbb{N}$.

Assume $L \in I$ is an arbitrary list of length $n \geq B_0$

Let $L_0 = [1, 2, 3, ..., n]$. Then $L_0 \in I$ and $size(L_0) = n$. Then the algorithm executes 2 steps followed by at least $|\sqrt{2n}|$ iterations of at least one statement. Then,

$$t(L_0) \ge \lfloor \sqrt{2n} \rfloor + 2$$
$$> \sqrt{2n}$$
$$c_0 \sqrt{n}$$

Then $\exists L \in I, size(L) = n \wedge t(L) \geq c_0 \sqrt{n}$.

=

Then $\forall n \in \mathbb{N}, n \geq B_0 \implies \exists L \in I, size(L) = n \wedge t(L) \geq c_0 \sqrt{n}.$ Then $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \implies \exists L \in I, size(L) = n \wedge t(L) \geq c\sqrt{n}.$ Then $T(n) \in \Omega(\sqrt{n}).$ Then $T(n) \in \Theta(\sqrt{n}).$

3. Prove each of the following statements by induction (in all parts, assume that $n \in \mathbb{N}$)

(a) $1+6+11+\ldots+(5n-4)=\frac{n(5n-3)}{2}, n \ge 1.$ **Solution:** Let P(n) denotes $1 + 6 + 11 + ... + (5n - 4) = \frac{n(5n-3)}{2}$. **Prove** P(1): (5n-4) = 1 and $\frac{n(5n-3)}{2} = \frac{1(5-3)}{2} = 1$. So P(1) is true. **Prove** $\forall n \in \mathbb{N}, P(n) \implies P(n+1)$: Assume $n \in \mathbb{N}$. # arbitrary natural number Assume P(n), that is $1 + 6 + 11 + 16 + ... + (5n - 4) = \frac{n(5n-3)}{2}$. # antecedent Then $1 + 6 + 11 + \dots + (5n - 4) + (5(n + 1) - 4) = \frac{n(5n - 3)}{2} + (5(n + 1) - 4).$ # add (5(n+1)-4) to both sides Then $1 + 6 + 11 + \dots + (5n - 4) + (5(n + 1) - 4) = \frac{5n^2 - 3n + 10n + 10 - 8}{2}$. # algebra Then $1 + 6 + 11 + \dots + (5n - 4) + (5(n + 1) - 4) = \frac{5n^2 - 7n + 2}{2}$. Then $1 + 6 + 11 + \dots + (5n - 4) + (5(n + 1) - 4) = \frac{5n^2 - 7n + 2}{2}$. # algebra # algebra Also we have $(n+1)(5(n+1)-3) = 5n^2 + 5n - 3n + 5n + 5 - 3$. # algebra So $1+6+11+\ldots+(5n-4)+(5(n+1)-4) = \frac{(n+1)(5(n+1)-3)}{2}$. # by the two previous lines Then P(n+1). # by the previous line Then $P(n) \implies P(n+1)$. # introduce \implies Then $\forall n \in \mathbb{N}, P(n) \implies P(n+1)$. # introduce \forall

- (b) For all natural numbers $n \ge 3$, $4^{3} + 4^{4} + 4^{5} + \ldots + 4^{n} = \frac{4(4^{n} - 16)}{2}.$ **Solution:** Let P(n) denotes $4^3 + 4^4 + 4^5 + ... + 4^n = \frac{4(4^n - 16)}{3}$ **Prove** P(3): $4^3 = 64$ and $\frac{4(4^3 - 16)}{3} = \frac{4(64 - 16)}{3} = 64$. So P(3) is true. **Prove** $\forall n \in \mathbb{N}, P(n) \implies P(n+1)$: Assume $n \in \mathbb{N}, n \geq 3$. # arbitrary natural number Assume P(n), that is $4^3 + 4^4 + 4^5 + \dots + 4^n = \frac{4(4^n - 16)}{3}$. # antecedent Then $4^3 + 4^4 + 4^5 + \dots + 4^n + 4^{n+1} = \frac{4(4^n - 16)}{3} + 4^{n+1}$. Then $4^3 + 4^4 + 4^5 + \dots + 4^n + 4^{n+1} = \frac{4^{n+1} + 3*4^{n+1} - 4*16}{3}$. # add 4^{n+1} to both sides # algebra Then $4^3 + 4^4 + 4^5 + \dots + 4^n + 4^{n+1} = \frac{4(4^{n+1} - 16)}{3}$. # algebra Then P(n+1). # by the previous line Then $P(n) \implies P(n+1)$. # introduce \implies Then $\forall n \in \mathbb{N}, P(n) \implies P(n+1)$. # introduce \forall
- (c) $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}, n \ge 2.$ Solution:

First note that $(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n}) = (\sqrt{n+1})^2 + (\sqrt{n})^2 = (n+1) - n = 1$. Therefore, $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$, and so $\sqrt{n+1} = \sqrt{n} + \frac{1}{\sqrt{n+1} + \sqrt{n}}$. Let P(n) denotes $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$. $\begin{array}{l} \textbf{Prove } P(2) \text{: } \sqrt{2} \approx 1.4 \text{ and } \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} \approx 1.7 \text{, so } P(2) \text{ is true.} \\ \textbf{Prove } \forall n \in \mathbb{N}, P(n) \implies P(n+1) \text{:} \\ \textbf{Assume } n \in \mathbb{N}, n \geq 2. \quad \# \text{ arbitrary natural number} \\ \textbf{Assume } P(n) \text{, that is } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \text{. } \quad \# \text{ antecedent} \\ \text{Then } \sqrt{n} + \frac{1}{\sqrt{n+1}+\sqrt{n}} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}+\sqrt{n}} \text{. } \quad \# \text{ add } \frac{1}{\sqrt{n+1}+\sqrt{n}} \text{ to both} \\ \text{sides} \\ \text{Then } \sqrt{n+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}+\sqrt{n}} \text{. } \quad \# \sqrt{n+1} = \sqrt{n} + \frac{1}{\sqrt{n+1}+\sqrt{n}} \\ \text{Then } \sqrt{n+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \text{. } \quad \# \sqrt{n+1} < \sqrt{n+1} + \sqrt{n}, \text{ so} \\ \frac{1}{\sqrt{n+1}} > \frac{1}{\sqrt{n+1}+\sqrt{n}} \end{array}$

Then P(n+1). # by the previous line Then $P(n) \Longrightarrow P(n+1)$. # introduce \Longrightarrow Then $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$. # introduce \forall