CSC165, Winter 2015

Assignment 3

Sample Solutions

IMPORTANT: You must use the proof structures and format of this course. Otherwise, you won't get full mark even if your answers are correct.

1. Prove or disprove each of the following claims.

You may assume that $f: \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}$ and $g: \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}$.
(a) Let $f(n)=n\left\lfloor\frac{n}{2}\right\rfloor$, and $g(n)=n^{2}-2 n+1$.

Then $f \in \Theta(g)$.

Solution:

Let $c_{2}=1, B_{2}=4$. Then $c_{2} \in \mathbb{R}^{+}$and $B_{2} \in \mathbb{N}$.
Assume n is a typical integer and $n \geq B_{2}$.
Then $n^{2}-4 n+2 \geq 0 . \quad \# n \geq B_{2} \geq 4$
Then $2 n^{2}-4 n+2 \geq n^{2}$. \# add n^{2} to both sides
Then $n^{2}-2 n+1 \geq n^{2} / 2$. \# divide both sides by 2
Then $n^{2}-2 n+1 \geq n\left\lfloor\frac{n}{2}\right\rfloor$. \# since $n^{2} / 2 \geq n\left\lfloor\frac{n}{2}\right\rfloor$
Then $c_{2} g(n) \geq f(n) . \quad \# c_{2}=1$
Then $\forall n \in \mathbb{N}, n \geq B_{2} \Rightarrow f(n) \leq c_{2} g(n) . \quad \#$ introduce \forall and \Longrightarrow
Let $c_{1}=1 / 3, B_{1}=3$. Then $c_{1} \in \mathbb{R}^{+}$and $B_{1} \in \mathbb{N}$.
Assume n is a typical integer and $n \geq B_{1}$.
Then $n^{2}+4 n \geq 14$. $\# n \geq B_{1} \geq 3$
Then $3 n^{2}-12 \geq 2 n^{2}-4 n+2$. \# add $2 n^{2}-4 n-12$ to both sides
Then $\frac{n^{2}}{2}-2 \geq \frac{n^{2}-2 n+1}{3}$. \# divide both sides by 6
Then $n\left\lfloor\frac{n}{2}\right\rfloor \geq \frac{n^{2}-2 n+1}{3}$. \# since $n\left\lfloor\frac{n}{2}\right\rfloor \geq \frac{n^{2}}{2}-2$
Then $c_{1} g(n) \leq f(n) . \quad \# c_{1}=1 / 3$
Then $\forall n \in \mathbb{N}, n \geq B_{1} \Rightarrow c_{1} g(n) \leq f(n) . \quad \#$ introduce \forall and \Longrightarrow
Let $B=\max \left(B_{1}, B_{2}\right)$.
Then $\exists c_{1} \in \mathbb{R}^{+}, \exists c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_{1} g(n) \leq f(n) \leq c_{2} g(n)$. \# introduce \exists
(b) Let $f(n)=n^{4}+3 n^{3}+n^{2}-1$, and $g(n)=n^{5}-8 n^{3}-n$.

Then $f \in \Theta(g)$.
Solution: f is not in $\Theta(g)$ since f is not in $\Omega(g)$.
Assume $f \in \Omega(g)$. \# to derive contradiction
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \frac{f(n)}{g(n)} \geq c . \quad$ \# by definition of Ω
Also, $\forall c \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Rightarrow \frac{f(n)}{g(n)}<c . \quad \#$ by definition of limits and since
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
Contradiction! \# $\frac{f(n)}{g(n)}$ cannot be satisfy the above two statements at the same time

Then $f \notin \Omega(g) . \quad \#$ assuming otherwise leads to contradiction
(c) Let $f(n)=n^{n}$, and $g(n)=n^{n-5}$.

Then $f \in \Theta(g)$.
Solution: f is not in $\Theta(g)$ since f is not in $\mathcal{O}(g)$.
Assume $c \in \mathbb{R}^{+}$, assume $B \in \mathbb{N}$. \# arbitrary values
Then $\exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Longrightarrow f(n)>c . g(n) . \quad \#$ definition of $\lim _{n \rightarrow \infty} f(n) / g(n)=$ ∞
Let n_{1} be such that $\forall n \in \mathbb{N}, n \geq n_{1} \Longrightarrow f(n)>c . g(n)$. \# instantiate n^{\prime}
Let $n_{0}=\max \left(B, n_{1}\right)$. Then $n_{0} \in \mathbb{N}$.
Then $n_{0} \geq B$. \# by definition of max
Then $f\left(n_{0}\right)>c g\left(n_{0}\right)$. \# by the assumption above $f(n)>c g(n)$, since $n_{0} \geq n_{1}$
Then $n_{0} \geq B \wedge f\left(n_{0}\right) \geq c g\left(n_{0}\right)$. \# introduce \wedge
Then $\exists n \in \mathbb{N}, n \geq B \wedge f(n)>c g(n)$. \# introduce \exists
Then $\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge f(n)>c g(n)$. \# introduce \forall
Then $f \notin \mathcal{O}(g) . \quad \#$ the above statement is the negation of the definition of \mathcal{O}
2. Prove a tight bound on the worst-case running time of each of the following algorithms
(a) def mystery1(L):
""" L is a non-empty list of length len(L) = n. """
if $L[0]$ is even:
$i=0$
while $\mathrm{i}<\mathrm{n}^{\wedge} 2$:
$\mathrm{L}[0]=\mathrm{L}[0]+\mathrm{L}[\mathrm{i} / \mathrm{n}]$
$i=i+1$
else:
i=0
while $\mathrm{i}<\mathrm{n}-1$:
$\mathrm{L}[0]=\mathrm{L}[0]-\mathrm{L}[\mathrm{i}]$
$i=i+1$
Solution: See the sample solutions to Tutorial 7.
(b)

```
def mystery2(L):
    """ L is a non-empty list of length len(L) = n. """
    step = 1
    index = 0
    while index < len(L):
        index = index + step
        step = step + 1
```


Solution:

Intuition: The number of iterations of the loop on any input L of length n will depend on the value of the variable index. And the value of index depends on the value of variable step. The variable step increases by 1 on each iteration of the loop. The variable step takes on the values:

$$
\text { step }=1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \ldots
$$

The variable index takes on the values:

$$
\text { index }=0 \rightarrow 0+1 \rightarrow 0+1+2 \rightarrow 0+1+2+3 \rightarrow \ldots \rightarrow 0+1+2+3+\ldots+k \rightarrow \ldots
$$

The value of index after the k th iteration of the loop is $0+1+2+3+\ldots+k=k(k+1) / 2$.
The number of iterations of the loop will be m, where m is such that $m(m+1) / 2>n$ (to get out of the loop) while $(m-1)((m-1)+1) / 2<n$. (To have a m th iteration of the loop, we need $(m-1)((m-1)+1) / 2<n$ or $(m-1) m / 2<n)$ So we have $m(m-1)<2 n$ and $m(m+1)>2 n$. Hence, there will be $m \approx\lceil\sqrt{2 n}\rceil$ iterations. (There wont be more than $\lceil\sqrt{2 n}\rceil$ iterations. There wont be fewer than $\lfloor\sqrt{2 n}\rfloor$ iterations.) We can justify this last conclusion more rigorously.
Consider the expression $m(m-1)$. We want $m(m-1)<2 n$. Suppose $m=\lceil\sqrt{2 n}\rceil+1$. Then, considering $m(m-1)$, we have

$$
\begin{aligned}
(\lceil\sqrt{2 n}\rceil+1)((\lceil\sqrt{2 n}\rceil+1)-1) & =(\lceil\sqrt{2 n}\rceil+1)(\lceil\sqrt{2 n}\rceil) \\
& =(\lceil\sqrt{2 n}\rceil)^{2}+(\lceil\sqrt{2 n}\rceil) \\
& \geq(\sqrt{2 n})^{2}+(\sqrt{2 n}) \\
& =2 n+(\sqrt{2 n}) \\
& >2 n
\end{aligned}
$$

Hence, $m \leq\lceil\sqrt{2 n}\rceil$ since otherwise $m(m-1) \nless 2 n$.
Similarly, we want $m(m+1) \geq 2 n$. Suppose $m=\lfloor\sqrt{2 n}\rfloor-1$. Then

$$
\begin{aligned}
(\lfloor\sqrt{2 n}\rfloor-1)((\lfloor\sqrt{2 n}\rfloor-1)+1) & =(\lfloor\sqrt{2 n}\rfloor-1)(\lfloor\sqrt{2 n}\rfloor) \\
& =(\lfloor\sqrt{2 n}\rfloor)^{2}-(\lfloor\sqrt{2 n}\rfloor) \\
& \leq(\sqrt{2 n})^{2}-(\sqrt{2 n}) \\
& =2 n-(\sqrt{2 n}) \\
& <2 n
\end{aligned}
$$

Hence, $m \geq\lfloor\sqrt{2 n}\rfloor$, since otherwise $m(m+1) \ngtr 2 n$.
Since the number of steps per iteration is constant, and the number of steps performed only depends on the length of the list L, we have that the worst-case runtime of the algorithm is $\Theta(\sqrt{n})$, where $n=\operatorname{len}(L)$.
To prove this conclusion in a detailed way, we need to put the above arguments in a formal proof that follows the usual structure.
Let I be the set of possible inputs to the algorithm. That is, I is the set of nonempty lists of numbers.

Let $c_{0}=4 \sqrt{2}+7$ and $B_{0}=1$.
Then $c_{0} \in \mathbb{R}^{+}$and $B_{0} \in \mathbb{N}$.
Assume $L \in I$ is an arbitrary list of length $n \geq B_{0}$
Then the algorithm executes 4 statements for each iteration of the loop (lines 4,5,6,7), and loops for at most $\lceil\sqrt{2 n}\rceil$ iterations.
In addition, the algorithm has 2 initialization statements and the last evaluation of the loop condition.
Then,

$$
\begin{aligned}
t(L) & \leq 4\lceil\sqrt{2 n}\rceil+3 \\
& \leq 4(\sqrt{2 n}+1)+3 \\
& =4 \sqrt{2 n}+7 \\
& \leq 4 \sqrt{2 n}+7 \sqrt{n} \\
& \leq(4 \sqrt{2}+7) \sqrt{n} \\
& \leq c_{0} \sqrt{n}
\end{aligned}
$$

Then $\forall L \in I$, size $(L) \geq B_{0} \Longrightarrow t(L) \leq c_{0} \sqrt{n} . \quad \# \operatorname{size}(L)=n$
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall L \in I$, size $(L) \geq B \Longrightarrow t(L) \leq c \sqrt{n}$.
Then $T(n) \in \mathcal{O}(\sqrt{n})$.
Let $c_{0}=\sqrt{2}$ and $B_{0}=1$.
Then $c_{0} \in \mathbb{R}^{+}$and $B_{0} \in \mathbb{N}$.
Assume $L \in I$ is an arbitrary list of length $n \geq B_{0}$
Let $L_{0}=[1,2,3, \ldots, n]$. Then $L_{0} \in I$ and $\operatorname{size}\left(L_{0}\right)=n$. Then the algorithm executes 2 steps followed by at least $\lfloor\sqrt{2 n}\rfloor$ iterations of at least one statement. Then,

$$
\begin{aligned}
& t\left(L_{0}\right) \geq\lfloor\sqrt{2 n}\rfloor+2 \\
& >\sqrt{2 n} \\
=c_{0} \sqrt{n} &
\end{aligned}
$$

Then $\exists L \in I, \operatorname{size}(L)=n \wedge t(L) \geq c_{0} \sqrt{n}$.

Then $\forall n \in \mathbb{N}, n \geq B_{0} \Longrightarrow \exists L \in I$, $\operatorname{size}(L)=n \wedge t(L) \geq c_{0} \sqrt{n}$.
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Longrightarrow \exists L \in I$, size $(L)=n \wedge t(L) \geq c \sqrt{n}$.
Then $T(n) \in \Omega(\sqrt{n})$.
Then $T(n) \in \Theta(\sqrt{n})$.
3. Prove each of the following statements by induction (in all parts, assume that $n \in \mathbb{N}$)
(a) $1+6+11+\ldots+(5 n-4)=\frac{n(5 n-3)}{2}, n \geq 1$.

Solution: Let $\mathrm{P}(\mathrm{n})$ denotes $1+6+11+\ldots+(5 n-4)=\frac{n(5 n-3)}{2}$.
Prove $P(1):(5 n-4)=1$ and $\frac{n(5 n-3)}{2}=\frac{1(5-3)}{2}=1$. So $P(1)$ is true.
Prove $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$:
Assume $n \in \mathbb{N}$. \# arbitrary natural number
Assume $P(n)$, that is $1+6+11+16+\ldots+(5 n-4)=\frac{n(5 n-3)}{2} . \quad \#$ antecedent
Then $1+6+11+\ldots+(5 n-4)+(5(n+1)-4)=\frac{n(5 n-3)}{2}+(5(n+1)-4) . \quad \#$ add $(5(n+1)-4)$ to both sides
Then $1+6+11+\ldots+(5 n-4)+(5(n+1)-4)=\frac{5 n^{2}-3 n+10 n+10-8}{2}$. \# algebra
Then $1+6+11+\ldots+(5 n-4)+(5(n+1)-4)=\frac{5 n^{2}-7 n+2}{2}$. \# algebra
Then $1+6+11+\ldots+(5 n-4)+(5(n+1)-4)=\frac{5 n^{2}-7 n+2}{2}$. \# algebra
Also we have $(n+1)(5(n+1)-3)=5 n^{2}+5 n-3 n+5 n+5-3$. \# algebra
So $1+6+11+\ldots+(5 n-4)+(5(n+1)-4)=\frac{(n+1)(5(n+1)-3)}{2}$. \# by the two previous lines
Then $P(n+1) . \quad \#$ by the previous line
Then $P(n) \Longrightarrow P(n+1)$. \# introduce \Longrightarrow
Then $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1) . \quad \#$ introduce \forall
(b) For all natural numbers $n \geq 3$,
$4^{3}+4^{4}+4^{5}+\ldots+4^{n}=\frac{4\left(4^{n}-16\right)}{3}$.
Solution: Let $\mathrm{P}(\mathrm{n})$ denotes $4^{3}+4^{4}+4^{5}+\ldots+4^{n}=\frac{4\left(4^{n}-16\right)}{3}$.
Prove $P(3): 4^{3}=64$ and $\frac{4\left(4^{3}-16\right)}{3}=\frac{4(64-16)}{3}=64$. So $P(3)$ is true.
Prove $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$:
Assume $n \in \mathbb{N}, n \geq 3$. \# arbitrary natural number
Assume $P(n)$, that is $4^{3}+4^{4}+4^{5}+\ldots+4^{n}=\frac{4\left(4^{n}-16\right)}{3} . \quad \#$ antecedent
Then $4^{3}+4^{4}+4^{5}+\ldots+4^{n}+4^{n+1}=\frac{4\left(4^{n}-16\right)}{3}+4^{n+1}$. $\quad \#$ add 4^{n+1} to both sides
Then $4^{3}+4^{4}+4^{5}+\ldots+4^{n}+4^{n+1}=\frac{\left.4^{n+1}+3 * 4^{n+1}-4 * 16\right)}{3}$. \# algebra
Then $4^{3}+4^{4}+4^{5}+\ldots+4^{n}+4^{n+1}=\frac{4\left(4^{n+1}-16\right)}{3}$. \# algebra
Then $P(n+1) . \quad \#$ by the previous line
Then $P(n) \Longrightarrow P(n+1)$. \# introduce \Longrightarrow
Then $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1) . \quad$ \# introduce \forall
(c) $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}, n \geq 2$.

Solution:

First note that $(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})=(\sqrt{n+1})^{2}+(\sqrt{n})^{2}=(n+1)-n=1$. Therefore, $\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$, and so $\sqrt{n+1}=\sqrt{n}+\frac{1}{\sqrt{n+1}+\sqrt{n}}$.
Let $\mathrm{P}(\mathrm{n})$ denotes $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$.

Prove $P(2): \sqrt{2} \approx 1.4$ and $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}} \approx 1.7$, so $P(2)$ is true.
Prove $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$:
Assume $n \in \mathbb{N}, n \geq 2$. \# arbitrary natural number
Assume $P(n)$, that is $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$. \# antecedent
Then $\sqrt{n}+\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}+\sqrt{n}} . \quad \#$ add $\frac{1}{\sqrt{n+1}+\sqrt{n}}$ to both
sides
Then $\sqrt{n+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}+\sqrt{n}} . \quad \# \sqrt{n+1}=\sqrt{n}+\frac{1}{\sqrt{n+1}+\sqrt{n}}$
Then $\sqrt{n+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}} . \quad \# \sqrt{n+1}<\sqrt{n+1}+\sqrt{n}$, so $\frac{1}{\sqrt{n+1}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}$

Then $P(n+1) . \quad \#$ by the previous line Then $P(n) \Longrightarrow P(n+1)$. \# introduce \Longrightarrow Then $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1) . \quad \#$ introduce \forall

