# CSC165, Winter 2015 <br> Assignment 2 <br> Due Mar 06, 11:59 p.m. 

- You may work in groups of no more than two students, and you should produce a single solution in a PDF file named a2.pdf, submitted to MarkUs. Submissions must be typed.
- The size of the PDF file must be less than $\mathbf{1 M B}$.
- Late submission policy: Each group can benefit from one time 24 -hour grace period with no penalty.
If you use your grace period for one assignment, then change your group for the next one, and your new group-mate has not use his/her grace period, the new group can submit late by 24 hours. However, if both students in the group have used their grace period, the new group cannot submit late.

IMPORTANT: You must use the proof structures and format of this course. Otherwise, you won't get full mark even if your answers are correct.

1. Prove or disprove each of the following claims.
(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$.
(Note that $\lceil x\rceil$ is the ceiling function. See Section 1.5 in the course notes for the definition)
(b) For all integers $x, y$, and $z$, if $x \nmid y z$ then $x \nmid y$ and $x \nmid z$.
(Note that the symbol $\dagger$ denotes "does not divide")
2. Use proof by contradiction to prove that for all prime numbers $x, y$, and $z, x^{2}+y^{2} \neq z^{2}$.

Hint: It might be helpful to recall that $a^{2}-b^{2}=(a-b)(a+b)$.
3. Consider the definition of the floor function:

$$
\mathbf{D e f}_{\mathbf{1}}: \forall x \in \mathbb{R}, \forall y \in \mathbb{Z},(y=\lfloor x\rfloor) \Leftrightarrow(y \leq x) \wedge(\forall z \in \mathbb{Z},(z \leq x) \Rightarrow(z \leq y))
$$

Use the proof structures of this course and $\mathbf{D e f}_{\boldsymbol{1}}$ to prove the following claims
(a) $\mathbf{S}_{\mathbf{1}}: \forall n \in \mathbb{Z}, \forall y \in \mathbb{R},(0 \leq y) \wedge(y<1) \Rightarrow(\lfloor n+y\rfloor=n)$.

Note: In your proof, you may ONLY use those properties of the floor function that are specified by Def $_{1}$.
(b) $\mathbf{S}_{\mathbf{2}}: \forall x \in \mathbb{R}, \exists y \in \mathbb{R},(0 \leq y) \wedge(y<1) \wedge(x=\lfloor x\rfloor+y)$.

Note: In your proof, you may ONLY use those properties of the floor function that are specified by $\mathrm{Def}_{1}$.
(c) $\mathbf{S}_{\mathbf{3}}: \forall x \in \mathbb{R}, \forall n \in \mathbb{Z},(\lfloor x+n\rfloor=\lfloor x\rfloor+n)$.

Note: In your proof, you may ONLY use those properties of the floor function that are specified by $\mathbf{D e f}_{\mathbf{1}}, \mathbf{S}_{\mathbf{1}}$, and $\mathbf{S}_{\mathbf{2}}$.

