
CSC165, Winter 2015

Assignment 2

Sample Solutions

IMPORTANT: You must use the proof structures and format of this course. Otherwise, you won’t get full
mark even if your answers are correct.

1. Prove or disprove each of the following claims.

(a) ∀x ∈ R,∀y ∈ R, dx + ye = dxe+ dye.
Solution: The claim is false. I will disprove it by proving the negation of the claim which is the
following statement:

∃x ∈ R,∃y ∈ R, dx + ye 6= dxe+ dye.

proof:

Let x = 1.2, y = 1.2. Then x, y ∈ R. # since 1.2 ∈ R
Then dx + ye = 3. # by definition of the ceiling function since x + y = 2.4
Then dxe+ dye = 4. # by definition of the ceiling function since dxe = dye = 2
Then dx + ye 6= dxe+ dye. # 3 6= 4
Then ∃x ∈ R,∃y ∈ R, dx + ye 6= dxe+ dye. # introduced ∃
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(b) For all integers x, y, and z, if x - y.z then x - y and x - z. (Note that the symbol - denotes “does
not divide”)

Solution: The claim is true. Here’s the translation of the claim in logical form:

∀x ∈ Z,∀y ∈ Z,∀z ∈ Z, (x - y.z)⇒ (x - y) ∧ (x - z).

proof:

Assume x, y, z ∈ Z. # x, y, z are typical integers
Assume (x | y) ∨ (x | z). # antecedent of contrapositive

Case 1: Assume x | y.
Then ∃k0 ∈ Z such that y = k0.x # definition of |
Then y.z = k0.x.z # multiple both sides by z
Then ∃k ∈ Z such that y.z = k.x # k = k0.z, k ∈ Z since Z is closed under ×
Then x | y.z # definition of |

Case 2: Assume x | z. # antecedent
Then ∃k0 ∈ Z such that z = k0.x # definition of |
Then y.z = k0.x.z # multiple both sides by y
Then ∃k ∈ Z such that y.z = k.x # k = k0.y, k ∈ Z since Z is closed under ×
Then x | y.z # definition of |

Then x | y.z # true for both cases
Then (x | y) ∨ (x | z)⇒ (x | y.z) # introduced ⇒
Then (x - y.z)⇒ (x - y) ∧ (x - z) # implication is equivalent to contrapositive

Then ∀x ∈ Z,∀y ∈ Z,∀z ∈ Z, (x - y.z)⇒ (x - y) ∧ (x - z) # introduced ∀
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2. Use proof by contradiction to prove that for all prime numbers x, y, and z, x2 + y2 6= z2.

Solution: As the first step, we should translate the claim into logical form:

Let P denotes the set of all prime numbers.

∀x ∈ P,∀y ∈ P,∀z ∈ P, (x2 + y2 6= z2).

To derive a contradiction, I assume the negation of the claim:

∃x ∈ P,∃y ∈ P,∃z ∈ P, (x2 + y2 = z2).

proof:

Assume ∃x ∈ P,∃y ∈ P,∃z ∈ P, (x2 + y2 = z2). # to derive contradiction
Let x0, y0, z0 ∈ P such that x2

0 + y20 = z20 # instantiate ∃
Then x2

0 = z20 − y20 = (z0 − y0)(z0 + y0). # algebra
Also factors of x2 are 1, x, x2. # x is a prime number
And (z0 + y0) 6= x and (z0− y0) 6= x. # (z0 + y0) 6= (z0 − y0) as y0 and z0 are primes, and so are > 0

Then ((z0− y0 = 1)∧ (z0 + y0 = x2
0))∨ ((z0 + y0 = 1)∧ (z0− y0 = x2

0)). # only possible cases

Case 1: Assume (z0 − y0 = 1) ∧ (z0 + y0 = x2
0).

Then z0 is the successor of y0. # since z0 − y0 = 1
Then z0 = 3 and y0 = 2. # 2 and 3 are the only successive primes
Then z0 + y0 = 5. # z0 = 3 and y0 = 2
Contradiction! # z0 + y0 = x2

0 = 5 and x0 ∈ N, but 5 is not square of any natural number

Case 2: Assume (z0 + y0 = 1) ∧ (z0 − y0 = x2
0).

Also y0 + z0 > 1. # y0 and z0 are primes, and so y0 > 1, z0 > 1
Contradiction! # by assumption z0 + y0 = 1

Contradiction! # derived contradiction for both cases
Then ∀x ∈ P,∀y ∈ P,∀z ∈ P, (x2 + y2 6= z2). # assuming the negation leads to a contradiction
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3. Consider the definition of the floor function:

Def1 :∀x ∈ R,∀y ∈ Z, (y = bxc)⇔ (y ≤ x) ∧ (∀z ∈ Z, (z ≤ x)⇒ (z ≤ y)).

Use the proof structures of this course and Def1 to prove the following claims

(a) S1 : ∀n ∈ Z,∀y ∈ R, (0 ≤ y) ∧ (y < 1)⇒ (bn + yc = n).

Note: In your proof, you may ONLY use those properties of the floor function that are specified
by Def1.

Solution:

Assume y ∈ R, n ∈ Z. # y is a typical real number, n is a typical integer
Assume (0 ≤ y) ∧ (y < 1). # antecedent

Then (n ≤ n + y) and (n + y < n + 1). # add n to both sides of the inequalities
Assume z ∈ Z. # z is a typical integer

Assume z ≤ n + y. # antecedent
Then z < n + 1. # n + y < n + 1 and transitivity of <
Then z ≤ n. # z < n + 1, n + 1 is the successor of n and there is no integer
between two successor integers

Then (z ≤ n + y)⇒ (z ≤ n). # introduced ⇒
Then ∀z ∈ Z, (z ≤ n + y)⇒ (z ≤ n). # introduced ∀
Then (n ≤ n + y) ∧ ∀z ∈ Z, (z ≤ n + y)⇒ (z ≤ n). # introduced ∧
Then bn + yc = n. # by Def1

Then (0 ≤ y) ∧ (y < 1)⇒ (bn + yc = n). # introduced ⇒
Then ∀n ∈ Z,∀y ∈ R, (0 ≤ y) ∧ (y < 1)⇒ (bn + yc = n). # introduced ∀

(b) S2 : ∀x ∈ R,∃y ∈ R, (0 ≤ y) ∧ (y < 1) ∧ (x = bxc+ y).

Note: In your proof, you may ONLY use those properties of the floor function that are specified
by Def1.

Solution: First, I prove the following lemma:

Lemma1 : ∀x ∈ R, (x− bxc < 1).

Proof for Lemma1:

Assume x ∈ R. # x is a typical real number
Then bxc < bxc+ 1. # add bxc to both sides of 0 < 1
Then x < bxc+ 1. # by contrapositive in Def1 since bxc+ 1 ∈ Z
Then x− bxc < 1. # deduct bxc from both sides

Then ∀x ∈ R, (x− bxc < 1). # introduced ∀
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Proof for S2:

Assume x ∈ R. # x is a typical real number
Let y = x− bxc. Then y ∈ R. # x, bxc ∈ R and R is closed under −
Then x = bxc+ y. # add bxc to both sides of y = x− bxc
Then 0 ≤ y. # by Def1, x ≥ bxc, so y = x− bxc ≥ 0
Then y < 1. # by Lemma1 and y = x− bxc < 1
Then (0 ≤ y) ∧ (y < 1) ∧ (x = bxc+ y). # introduced ∧

Then ∀x ∈ R,∃y ∈ R, (0 ≤ y) ∧ (y < 1) ∧ (x = bxc+ y). # introduced ∀

(c) S3 : ∀x ∈ R,∀n ∈ Z, (bx + nc = bxc+ n).

Note: In your proof, you may ONLY use those properties of the floor function that are specified
by Def1, S1, and S2.

Solution:

Assume x ∈ R, n ∈ Z. # x is a typical real number, n is a typical integer
Then ∃y ∈ R such that (0 ≤ y < 1) and (x = bxc+ y). # by S2

Then x + n = bxc+ n + y. # add n to both sides of x = bxc+ y
Then bx + nc = bbxc+ n + yc = bxc + n. # by S1 since (0 ≤ y < 1) and bxc, n ∈ Z
and so bxc+ n ∈ Z

Then ∀x ∈ R,∀n ∈ Z, (bx + nc = bxc+ n). # introduced ∀
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