CSC165, Winter 2015

Assignment 2
Sample Solutions

IMPORTANT: You must use the proof structures and format of this course. Otherwise, you won't get full mark even if your answers are correct.

1. Prove or disprove each of the following claims.
(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$.

Solution: The claim is false. I will disprove it by proving the negation of the claim which is the following statement:

$$
\exists x \in \mathbb{R}, \exists y \in \mathbb{R},\lceil x+y\rceil \neq\lceil x\rceil+\lceil y\rceil
$$

proof:
Let $x=1.2, y=1.2$. Then $x, y \in \mathbb{R} . \quad \#$ since $1.2 \in \mathbb{R}$
Then $\lceil x+y\rceil=3$. \# by definition of the ceiling function since $x+y=2.4$
Then $\lceil x\rceil+\lceil y\rceil=4 . \quad$ \# by definition of the ceiling function since $\lceil x\rceil=\lceil y\rceil=2$
Then $\lceil x+y\rceil \neq\lceil x\rceil+\lceil y\rceil . \quad \# 3 \neq 4$
Then $\exists x \in \mathbb{R}, \exists y \in \mathbb{R},\lceil x+y\rceil \neq\lceil x\rceil+\lceil y\rceil . \quad \#$ introduced \exists
(b) For all integers x, y, and z, if $x \nmid y . z$ then $x \nmid y$ and $x \nmid z$. (Note that the symbol \dagger denotes "does not divide")
Solution: The claim is true. Here's the translation of the claim in logical form:

$$
\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \forall z \in \mathbb{Z},(x \nmid y . z) \Rightarrow(x \nmid y) \wedge(x \nmid z) .
$$

proof:
Assume $x, y, z \in \mathbb{Z} . \quad \# x, y, z$ are typical integers
Assume $(x \mid y) \vee(x \mid z)$. \# antecedent of contrapositive
Case 1: Assume $x \mid y$.
Then $\exists k_{0} \in \mathbb{Z}$ such that $y=k_{0} \cdot x \quad \#$ definition of \mid
Then $y . z=k_{0} \cdot x . z \quad \#$ multiple both sides by z
Then $\exists k \in \mathbb{Z}$ such that $y . z=k . x \quad \# k=k_{0} . z, k \in \mathbb{Z}$ since \mathbb{Z} is closed under \times Then $x \mid y . z \quad$ \# definition of \mid
Case 2: Assume $x \mid z$. \# antecedent
Then $\exists k_{0} \in \mathbb{Z}$ such that $z=k_{0} \cdot x \quad \#$ definition of \mid
Then $y . z=k_{0} \cdot x \cdot z \quad$ \# multiple both sides by y
Then $\exists k \in \mathbb{Z}$ such that $y . z=k \cdot x \quad \# k=k_{0} \cdot y, k \in \mathbb{Z}$ since \mathbb{Z} is closed under \times
Then $x \mid y . z \quad$ \# definition of \mid
Then $x \mid y . z \quad \#$ true for both cases
Then $(x \mid y) \vee(x \mid z) \Rightarrow(x \mid y \cdot z) \quad$ \# introduced \Rightarrow
Then $(x \nmid y \cdot z) \Rightarrow(x \nmid y) \wedge(x \nmid z) \quad$ \# implication is equivalent to contrapositive
Then $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \forall z \in \mathbb{Z},(x \nmid y . z) \Rightarrow(x \nmid y) \wedge(x \nmid z) \quad$ \# introduced \forall
2. Use proof by contradiction to prove that for all prime numbers x, y, and $z, x^{2}+y^{2} \neq z^{2}$.

Solution: As the first step, we should translate the claim into logical form:
Let P denotes the set of all prime numbers.

$$
\forall x \in P, \forall y \in P, \forall z \in P,\left(x^{2}+y^{2} \neq z^{2}\right)
$$

To derive a contradiction, I assume the negation of the claim:

$$
\exists x \in P, \exists y \in P, \exists z \in P,\left(x^{2}+y^{2}=z^{2}\right)
$$

proof:

Assume $\exists x \in P, \exists y \in P, \exists z \in P,\left(x^{2}+y^{2}=z^{2}\right) . \quad \#$ to derive contradiction
Let $x_{0}, y_{0}, z_{0} \in P$ such that $x_{0}^{2}+y_{0}^{2}=z_{0}^{2} \quad \#$ instantiate \exists
Then $x_{0}^{2}=z_{0}^{2}-y_{0}^{2}=\left(z_{0}-y_{0}\right)\left(z_{0}+y_{0}\right)$. \# algebra
Also factors of x^{2} are $1, x, x^{2}$. \#x is a prime number
And $\left(z_{0}+y_{0}\right) \neq x$ and $\left(z_{0}-y_{0}\right) \neq x . \quad \#\left(z_{0}+y_{0}\right) \neq\left(z_{0}-y_{0}\right)$ as y_{0} and z_{0} are primes, and so are >0
Then $\left(\left(z_{0}-y_{0}=1\right) \wedge\left(z_{0}+y_{0}=x_{0}^{2}\right)\right) \vee\left(\left(z_{0}+y_{0}=1\right) \wedge\left(z_{0}-y_{0}=x_{0}^{2}\right)\right)$. \# only possible cases
Case 1: Assume $\left(z_{0}-y_{0}=1\right) \wedge\left(z_{0}+y_{0}=x_{0}^{2}\right)$.
Then z_{0} is the successor of y_{0}. \# since $z_{0}-y_{0}=1$
Then $z_{0}=3$ and $y_{0}=2$. \# 2 and 3 are the only successive primes
Then $z_{0}+y_{0}=5 . \quad \# z_{0}=3$ and $y_{0}=2$
Contradiction! \# $z_{0}+y_{0}=x_{0}^{2}=5$ and $x_{0} \in \mathbb{N}$, but 5 is not square of any natural number
Case 2: Assume $\left(z_{0}+y_{0}=1\right) \wedge\left(z_{0}-y_{0}=x_{0}^{2}\right)$.
Also $y_{0}+z_{0}>1 . \quad \# y_{0}$ and z_{0} are primes, and so $y_{0}>1, z_{0}>1$
Contradiction! \# by assumption $z_{0}+y_{0}=1$
Contradiction! \# derived contradiction for both cases
Then $\forall x \in P, \forall y \in P, \forall z \in P,\left(x^{2}+y^{2} \neq z^{2}\right) . \quad \#$ assuming the negation leads to a contradiction
3. Consider the definition of the floor function:
$\operatorname{Def}_{1}: \forall x \in \mathbb{R}, \forall y \in \mathbb{Z},(y=\lfloor x\rfloor) \Leftrightarrow(y \leq x) \wedge(\forall z \in \mathbb{Z},(z \leq x) \Rightarrow(z \leq y))$.
Use the proof structures of this course and Def $\boldsymbol{f}_{\boldsymbol{1}}$ to prove the following claims
(a) $\mathbf{S}_{\mathbf{1}}: \forall n \in \mathbb{Z}, \forall y \in \mathbb{R},(0 \leq y) \wedge(y<1) \Rightarrow(\lfloor n+y\rfloor=n)$.

Note: In your proof, you may ONLY use those properties of the floor function that are specified by Def $_{1}$.

Solution:

Assume $y \in \mathbb{R}, n \in \mathbb{Z} . \quad \# y$ is a typical real number, n is a typical integer
Assume $(0 \leq y) \wedge(y<1)$. \# antecedent
Then $(n \leq n+y)$ and $(n+y<n+1)$. $\quad \#$ add n to both sides of the inequalities
Assume $z \in \mathbb{Z} . \quad \# z$ is a typical integer
Assume $z \leq n+y$. \# antecedent
Then $z<n+1$. $\# n+y<n+1$ and transitivity of $<$
Then $z \leq n$. \# $z<n+1, n+1$ is the successor of n and there is no integer
between two successor integers
Then $(z \leq n+y) \Rightarrow(z \leq n)$. \# introduced \Rightarrow
Then $\forall z \in \mathbb{Z},(z \leq n+y) \Rightarrow(z \leq n)$. \# introduced \forall
Then $(n \leq n+y) \wedge \forall z \in \mathbb{Z},(z \leq n+y) \Rightarrow(z \leq n)$. \# introduced \wedge
Then $\lfloor n+y\rfloor=n$. \# by $\mathbf{D e f}_{1}$
Then $(0 \leq y) \wedge(y<1) \Rightarrow(\lfloor n+y\rfloor=n) . \quad \#$ introduced \Rightarrow
Then $\forall n \in \mathbb{Z}, \forall y \in \mathbb{R},(0 \leq y) \wedge(y<1) \Rightarrow(\lfloor n+y\rfloor=n)$. \# introduced \forall
(b) $\mathbf{S}_{\mathbf{2}}: \forall x \in \mathbb{R}, \exists y \in \mathbb{R},(0 \leq y) \wedge(y<1) \wedge(x=\lfloor x\rfloor+y)$.

Note: In your proof, you may ONLY use those properties of the floor function that are specified by Def $_{1}$.
Solution: First, I prove the following lemma:

$$
\text { Lemma1 : } \forall x \in \mathbb{R},(x-\lfloor x\rfloor<1) .
$$

Proof for Lemma1:

Assume $x \in \mathbb{R} . \quad \# x$ is a typical real number
Then $\lfloor x\rfloor<\lfloor x\rfloor+1$. \# add $\lfloor x\rfloor$ to both sides of $0<1$
Then $x<\lfloor x\rfloor+1$. \# by contrapositive in Def $_{1}$ since $\lfloor x\rfloor+1 \in \mathbb{Z}$
Then $x-\lfloor x\rfloor<1$. \# deduct $\lfloor x\rfloor$ from both sides
Then $\forall x \in \mathbb{R},(x-\lfloor x\rfloor<1)$. \# introduced \forall

Proof for $\mathbf{S}_{\mathbf{2}}$:

Assume $x \in \mathbb{R} . \quad \# x$ is a typical real number
Let $y=x-\lfloor x\rfloor$. Then $y \in \mathbb{R} . \quad \# x,\lfloor x\rfloor \in \mathbb{R}$ and \mathbb{R} is closed under -
Then $x=\lfloor x\rfloor+y$. \# add $\lfloor x\rfloor$ to both sides of $y=x-\lfloor x\rfloor$
Then $0 \leq y$. \# by $\operatorname{Def}_{1}, x \geq\lfloor x\rfloor$, so $y=x-\lfloor x\rfloor \geq 0$
Then $y<1$. \# by Lemma1 and $y=x-\lfloor x\rfloor<1$
Then $(0 \leq y) \wedge(y<1) \wedge(x=\lfloor x\rfloor+y)$. \# introduced \wedge
Then $\forall x \in \mathbb{R}, \exists y \in \mathbb{R},(0 \leq y) \wedge(y<1) \wedge(x=\lfloor x\rfloor+y)$. \# introduced \forall
(c) $\mathbf{S}_{\mathbf{3}}: \forall x \in \mathbb{R}, \forall n \in \mathbb{Z},(\lfloor x+n\rfloor=\lfloor x\rfloor+n)$.

Note: In your proof, you may ONLY use those properties of the floor function that are specified by $\mathbf{D e f}_{1}, \mathbf{S}_{\mathbf{1}}$, and $\mathbf{S}_{\mathbf{2}}$.

Solution:

Assume $x \in \mathbb{R}, n \in \mathbb{Z} . \quad \# x$ is a typical real number, n is a typical integer
Then $\exists y \in \mathbb{R}$ such that $(0 \leq y<1)$ and $(x=\lfloor x\rfloor+y)$. \# by $\mathbf{S}_{\mathbf{2}}$
Then $x+n=\lfloor x\rfloor+n+y$. \# add n to both sides of $x=\lfloor x\rfloor+y$
Then $\lfloor x+n\rfloor=\lfloor\lfloor x\rfloor+n+y\rfloor=\lfloor x\rfloor+n . \quad \#$ by $\mathbf{S}_{\mathbf{1}}$ since $(0 \leq y<1)$ and $\lfloor x\rfloor, n \in \mathbb{Z}$ and so $\lfloor x\rfloor+n \in \mathbb{Z}$
Then $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z},(\lfloor x+n\rfloor=\lfloor x\rfloor+n)$. \# introduced \forall

