Self-Tuning Networks

Matthew MacKay*, Paul Vicol*, Jon Lorraine, David Duvenaud, Roger Grosse

‘7‘ VECTOR
INSTITUTE

Motivation

e Reqularization hyperparameters such as weight decay, dropout, and data augmentation
are crucial for neural net generalization but are difficult to tune

e Automatic approaches for hyperparameter optimization have the potential to:
o Speed up hyperparameter search and save researcher time
o Discover solutions that outperform manually-designed ones
o Make ML more accessible to non-experts (e.g., chemists, biologists, physicists)

e We introduce an efficient, gradient-based approach to adapt reqularization
hyperparameters during training
o Easy-to-implement, memory-efficient, and outperforms competing methods

Bilevel Optimization

e Hyperparameter optimization is a bilevel optimization problem:

A* = arg mAin Loa(A, w™) subject to w* = arg min Lqin(A, W)
A%%

Outer loop over
hyperparameters

Inner loop to optimize

while True: model parameters

hparam = get hyperparameter_value()
W = init weights()

while not converged:
W = gradient step(W, hparam)

Grid Search, Random Search, & BayesOpt

Grid Search Random Search Bayesian Optimization

)\1)\1

e Many approaches treat the outer optimization over \ as a black-box problem
o Ignores structure that could be used for faster convergence

e These approaches re-train models from scratch to evaluate each new hyperparameter
o Wastes computation!

Approximating the Best-Response Function

e The “best-response” function maps hyperparameters to optimal weights on the training set:

* .
W (A) — alg m“lfn £train()\7 W)
e Idea: Learn a parametric approximation W¢ to the best-response function W¢ ~wW

e Advantages:
e Since W¢ is differentiable, we can use gradient-based optimization to update the
hyperparameters
e By training VAV¢ we do not need to re-train models from scratch; the
computational effort needed to fit W¢ around each hyperparameter is not wasted

Approximating the Best-Response Function

e Update the approximation parameters qb using the chain rule:

OL rain (W) OW
ow, 0

e Update the hyperparameters using the validation loss gradient:

OLyat(W(N)) OW4(A)
oW,(N) O

Globally Approximating the Best-Response

Global Best-Response Approximation

initialize ¢
initialize A

loop
T~ Desgin Train the hypernetwork to produce good weights
A~ p(\) for any hyperparameter A ~ p(\)
Qb = avqﬁﬁtrain(wd)(/\)a >\7 33)

loop : : : :
5 55 Dy ___ Find the optimal hyperparameters via gradient
- 5V;\£mz(w¢(;\), z) descenton L,

Return \, wy ()

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018

Scalability Challenges

Two core challenges to scale this approach to large networks:

1.

Intractable to model W¢(A) over the entire hyperparameter space, e.g., the

support of p(\)

m) Solution:

Approximate the best-response /ocally in a neighborhood around
the current hyperparameter value

2.

Difficult to learn a mapping A — w when W are the weights of a large network

m) Solution:

STNs introduce a compact approximation to the best-response
by modulating activations based on the hyperparameters

Locally Approximating the Best-Response

e Jointly optimize the hypernetwork parameters and the hyperparameters by alternating
gradient steps on the training and validation sets

Local Best-Response Approximation

initialize ¢
initialize \
loop
€T n Dt'rainA
A~pA|A)
¢ - avd)ﬁtv'ain(wq‘b()‘)’ /\a CE)

Train the hypernet to produce good weights
around the current hyperparameter \ ~ p(\ | A)

z ~ Dyal Update the hyperparameters using the local

A—= ﬁV;\Lml(wd,(S\), z) best-response approximation
Return A\, wy ()

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018

Effect of the Sampling Distribution

Legend:

A

Too small

The hypernetwork will match
the best-response at the
current hyperparameter, but
may not be locally correct

Exact best-response w*(\)

Too wide

The hypernetwork may be
insufficiently flexible to model
the best-response, and the
gradients will not match

Approximate best-response wy(A) = — = Hyperparameter distribution p(\|o)

A

Just right

The gradient of the
approximation will match
that of the best-response

MacKay et al. Self-Tuning Networks. 2019.

Adjusting the Hyperparameter Distribution

e As the smoothness of the loss landscape changes during training, it may be beneficial
to vary the scale of the hyperparameter distribution, o

e We adjust 0 based on the sensitivity of the validation loss on the sampled
hyperparameters, via an entropy term:.

Eewp(elo)[Lrar(A + €, Wo(A + €))] — TH[p(e | o)]

MacKay et al. Self-Tuning Networks. 2019.

Compact Best-Response Approximation

Naively representing the mapping \ — w is intractable when W is high-dimensional

We propose an architecture that computes the usual elementary weight/bias, plus an
additional weight/bias that is scaled by a linear transformation of the hyperparameters:

WqS()\) — Welem + (V)\) Orow Whyper
B¢<)\) = belem + (C)\) © bhyper

Memory-efficient. roughly 2x number of parameters and scales well to high dimensions

MacKay et al. Self-Tuning Networks. 2019.

Compact Best-Response Approximation

e This architecture can be interpreted as directly operating on the pre-activations of the
layer, and adding a correction to account for the hyperparameters:

AN

W¢()\)33 + Bqﬁ()‘) = |Welem® + belem] + [(VA) Orow (Whyperw) +(CAO bhyper)]

J U J
Y Y
Usual computation Correction term to account for
of Linear layer the hyperparameters

e Sample-efficient: since the predictions can be computed by transforming
pre-activations, the hyperparameters for different examples in a mini-batch can be
perturbed independently

o E.g., adifferent dropout rate for each example

MacKay et al. Self-Tuning Networks. 2019.

STN Implementation

Use HyperLinear layer as a

f drop-in replacement for Linear

class HyperLinear(nn.Module): layers — build a HyperLSTM

def __init_ (self, in_dim, out_dim, n_hparams):
super (HyperLinear, self). init ()
self.elem_w = nn.Parameter(torch.Tensor(out_dim, in_dim)) Yt Z/t%-l
self.elem_b = nn.Parameter(torch.Tensor(out_dim))

self.hnet_w = nn.Parameter(torch.Tensor(out_dim, in_dim))
self.hnet_b = nn.Parameter(torch.Tensor(out_dim)) ‘/
self.h_to_scalars = nn.Linear(n_hparams, out_dim*2, bias=False) [4/
| fri 1
def forward(self, input, hparam_tensor):
output = F.linear(input, self.elem w, self.elem_b) l]
hnet_scalars = self.h to scalars(hparam_tensor)
hnet_wscalars = hnet_scalars[:, :self.n_scalars]
hnet_bscalars = hnet_scalars[:, self.n_scalars:] let :23t4—1

hnet_out = hnet_wscalars * F.linear(input, self.hnet_w)
hnet_out += hnet_bscalars * self.hnet b

output += hnet_out

return output

MacKay et al. Self-Tuning Networks. 2019.

STN Algorithm

Algorithm 1 STN Training Algorithm

Initialize: Best-response approximation parameters ¢, hy-
perparameters A, learning rates {a; }?_,
while not converged do
fori = 1.,..., LT do
€ ~ p(elo)
¢<—¢—a18 fAN+ €, Wep(A+€))
oris = 1, .u. Tvalzd do
e ~ plelo)
A~ A—ag=y a)\ (F(A+ €, Wp(A+€)) — TH[p(e|o)])
O — O—03 2= 8 (F(A+€,Wep(A+€)) —TH[p(e|o)])

MacKay et al. Self-Tuning Networks. 2019.

STN Algorithm

batch_htensor = perturb(htensor, hscale)

o hparam_tensor = hparam transform(batch_htensor)
Optimization step on the images, labels = next batch(train_dataset)

training set pred = hyper model(images, batch_htensor, hparam_tensor)
loss = F.cross entropy(pred, labels)

loss.backward()

optimizer.step()

batch_htensor = perturb(htensor, hscale)

hparam_tensor = hparam transform(batch_htensor)

images, labels = next batch(val_dataset)

Optimization step on the pred = hyper model(images, batch _htensor, hparam_ tensor)
validation set xentropy loss = F.cross entropy(pred, labels)

entropy = compute_entropy(hscale)

loss = xentropy_loss - args.entropy_weight * entropy
loss.backward()

hyper optimizer.step()

scale_optimizer.step()

MacKay et al. Self-Tuning Networks. 2019.

STN Hyperparameter Schedules

e Due to joint optimization of the hypernetwork and hyperparameters, STNs do not use fixed
hyperparameter values throughout training
o STNs discover hyperparameter schedules which can outperform fixed

hyperparameters
e The same trajectory is followed regardless of the initial hyperparameter value
1.0
Method Val Test 9
S 0.8
p = 0.68, Fixed 85.83 83.19 -
>
p = 0.68 w/ Gaussian Noise 85.87 82.29 Q 0.6, _
p = 0.68 w/ Sinusoid Noise 85.29 82.15 5 5. Init=0.3
p = 0.78 (Final STN Value) 89.65 86.90 = — Init=0.5
o .
STN 82.58 79.02 50.2 — Init=0.7
@) — Init=0.9
LSTM w/ STN Schedule ~ 82.87 79.93 0oL | | | | |
0 5k 10k 15k 20k 25k

Iteration
MacKay et al. Self-Tuning Networks. 2019.

STN - LSTM Experiment Setup

Experiment: LSTM on Penn TreeBank (a common benchmark for RNN regularization)
7/ hyperparameters:

Hidden dropout &
weight DropConnect

Yt Y1
Output dropout T

Activation Regularization

allm © hyllz

Input dropout

I | | |
T /3||ht—ht+1|\2

Temporal Activation Regularization

MacKay et al. Self-Tuning Networks. 2019.

STN - LSTM Experiment Results

—— Grid
—— Random
—— BayesOpt

L_ —— STN

Dropout Rate

PTB
Method Val Perplexity Test Perplexity
Grid Search 07.32 94.58
Random Search 84.81 81.46
Bayesian Optimization 7213 69.29
STN 70.30 67.68

0 20k 40k 60k 80k 100k
Time (s)
1.0
—— Output
0.8 —— Input
—— Hidden
0.6 Embedding
0.4
0.2
R0 0 20k 40k 60k 80k

Iteration

2.00;
1.751
1.501
o 1.251
r_:ts 1.001
> 0.751
0.501
0.251
0.001

0 20k 40k 60k 80k
lteration 1 2cKay et al. Self-Tuning Networks. 2019.

STN - CNN Experiment Setup

e Experiment: AlexNet (~60 million parameters) on CIFAR-10
e 15 hyperparameters:

e Separate dropout rates on each convolutional and fully-connected layer

e Data augmentation hyperparameters

Saturation Brightness Hue Cutout
u J u J

Y Y
Continuous Discrete

MacKay et al. Self-Tuning Networks. 2019.

STN - CNN Experiment Results

1.4
1.3 —— Grid
CIFAR-10 ' — Random
1.2
w0
Method Val Loss Test Loss 81.11 BayesOpt
— — STN
Grid Search 0.794 0.809 S 1.0
0.9
Random Search 0.921 0.752 + 0.8
0.8
Bayesian Optimization 0.636 0.651 m 0.7 \
STN 0.575 0.576 0.6
05% 20k 40k 60k 80k

Time (s)

e Again, STNs substantially outperform grid/random search and BayesOpt
o Achieve lower validation loss than BayesOpt in < 74 the time

MacKay et al. Self-Tuning Networks. 2019.

STN - CNN Hyperparameter Schedules

e STNs discover nontrivial schedules for dropout and data augmentation

6
(7]
1.0 o 0.5 —— Hue Q —— Cutout holes
Layer 0 w —— Contrast :[o: —— Cutout length
08 La er 1 (V)] 04 -
% Yer 1 s —— Saturation 54, \
205 E 03 —— Brightness < u\
= ayer o —— Inscale =
8_0.4 Layer 4 € 0.2] /
5 = 5]
o Input o = 2 \
: 02 :zg (1) g 01 é \(Nﬁ
0.0 , , , 0.0{ | Z0
0 40k 80k 120k 0 40k 80k 120k 0 40k 80k 120k
Iteration Iteration Iteration

MacKay et al. Self-Tuning Networks. 2019.

STN - Sensitivity Analysis

e How often should we alternate e \What is the effect of the variance of the
between train and val steps? hyperparameter distribution?
1.0 1.0
————— BayesOpt ----- BayesOpt

0.9 —— 1 Train /1 Val 0.9 —— Fixed Scale 0.1

a —— 2 Train/ 1 Val § —— Fixed Scale 0.5

8 gl bl 10 TEAIR 15 VI 3 0.8{ fi-----==-=----—- —— Fixed Scale 1.0

r_>c — 15 Train / 15 Val ;0

4(7; 0.7 1 H 0.7 — '

q) l\ q) Il

m [Yy S Sy ———————— m | Y S S ——————————
0.6 0.6
058 20k 40k 60k 80k 055 20k 40k 60k 80k

Time (s) Time (s)

MacKay et al. Self-Tuning Networks. 2019.

What can we and what can’t we tune??

What can we tune?

e STNs can tune most reqularization hyperparameters including
o Dropout
o Continuous data augmentation hyperparameters (hue, saturation, contrast, etc.)
o Discrete data augmentation hyperparameters (# and length of cutout holes)

What can’t we tune?

e Because we collapsed the bilevel problem into a single-level one, there is no inner
training loop

m) e cannot tune inner optimization hyperparameters like learning rates

MacKay et al. Self-Tuning Networks. 2019.

A* = arg mAin Loar(A, argmin Lyqin (A, W))

Gradient-Based Approaches to HO

Implicit Differentiation

aﬁtmm ()\7 W)
ow

=0

Assuming training has
converged, we can use the
implicit function theorem

dW()\) _ <82£train> - a2‘£:tmin
d\ ow? ONOW

Expensive: Solving the linear
system with CG requires
Hessian-vector products

Iterative Differentiation

A =arg m/\in Loa (A, argmin Ly4in (N, W))

~— _

~—

Backprop through optimization steps

Use autodiff to backprop
through training

Full optimization procedure or
a truncated version of it

Expensive when the number
of gradient steps increases

Hypernet-Based

A= arg m/\in LA, argmin Lygin (A, W))

~ _
~—

Wo(\) ~ w(\)

Learn a hypernetwork
Wo(A) = wi(A)
parameterized by qﬁ

to map hyperparameters
to network weights

Does not require differentiating
through optimization

Efficient, can also optimize
discrete & stochastic
hyperparameters

Summary

e \We propose a compact architecture for approximating neural net best-responses, that
can be used as a drop-in replacement for existing deep learning modules.

e Our training algorithm alternates between approximating the best-response around the
current hyperparameters and optimizing the hyperparameters with the approximate
best-response.

1. Computationally inexpensive
2. Can optimize all reqularization hyperparameters, including discrete
hyperparameters
3. Scales to large NNs
e Our approach discovers hyperparameter schedules that can outperform fixed
hyperparameter values.

