
Stochastic Hyperparameter Optimization with Hypernets
Jonathan Lorraine, David Duvenaud

University of Toronto

Main Idea

• Machine learning models often nest optimization of model weights in the optimization
of hyperparameters.

• We collapse the nested optimization into joint optimization by training a neural net-
work to output optimal weights for each hyperparameter.

• The method converges to locally optimal weights and hyperparameters for large hy-
pernets and effectively tunes thousands of hyperparameters.

Hyperparameter λ

Lo
ss

 L

Train loss of optimized weights
Train loss of hypernet weights
Valid. loss of optimized weights
Valid. loss of hypernet weights
Optimal hyperparameter λ

Hyperparameter λ

Lo
ss

 L

Train loss of optimized weights
Train loss of hypernet weights
Valid. loss of optimized weights
Valid. loss of hypernet weights
Optimal hyperparameter λ

p(λ|λ̂)

Hyperparameter λ

Lo
ss

 L

Train loss of optimized weights
Train loss of hypernet weights
Valid. loss of optimized weights
Valid. loss of hypernet weights
Optimal hyperparameter λ

p(λ|λ̂)

Figure 2: Training and validation loss of a neural net for linear regression on MNIST, estimated by
cross-validation (crosses) or by a hypernet (lines), which outputs 7, 850-dimensional network weights.
The training and validation loss can be cheaply evaluated at any hyperparameter value using a hypernet.
Standard cross-validation requires training from scratch each time. Left: A global approximation the
best-response. Right: A local approximation to the best-response.

Hyperparameter Tuning is Nested Optimization

• Selecting a hyperparameter is finding a solution to the following bi-level optimization
problem:

argmin
λ

L
Valid.

(
argmin

w
L

Train
(w, λ)

)
(1)

• The optimized model weights depend on the choice of hyperparameter. This is a
best-response function of the weights to the hyperparameters:

w∗(λ) = argmin
w

L
Train

(w, λ) (2)

Learning a Mapping from Hyper-
parameters to Optimal Weights

• A hypernet is a neural network which outputs network weights.

• The best-response takes hyperparameters and outputs weights, so approximate it with
a hypernet.

Theorem. Sufficiently powerful hypernets can learn continuous best-response func-
tions, which minimizes the expected loss for any hyperparameter distribution.

There exists φ∗, such that for all λ ∈ support(p (λ)) ,

L
Train

(wφ∗ (λ) , λ) = min
w
L

Train
(w, λ)

and φ∗ = argmin
φ

E
p(λ′)

[
L

Train
(wφ(λ

′), λ′)

]

Globally Optimizing the Hypernet

• We can learn the best-response without viewing pairs of hyperparameters and op-
timized weights, by substituting the hypernet output into the training loss. The
algorithm is denoted Hyper Training.

1: initialize φ
2: initialize λ̂
3: for Thypernet steps do
4: x ∼ Training data, λ ∼ p (λ)
5: φ = φ− α∇φLTrain(x,wφ(λ), λ)

6: for Thyperparameter steps do
7: x ∼ Validation data
8: λ̂ = λ̂− β∇λ̂LValid.(x,wφ(λ̂))

9: return λ̂,wφ(λ̂)

Locally Optimizing the Hypernet

• It is difficult to learn the best-response globally due to finite network size and training
time.

• It is easier to learn the best-response locally, update the hyperparameters and repeat.

1: initialize φ, λ̂
2: for Tjoint steps do
3: x ∼ Training data, λ ∼ p(λ|λ̂)
4: φ = φ− α∇φLTrain(x,wφ(λ), λ)
5: x ∼ Validation data
6: λ̂ = λ̂− β∇λ̂LValid.(x,wφ(λ̂))

7: return λ̂,wφ(λ̂)

Optimizing 7,850 Hyperparameters

• We investigate our methods performance on tuning hyperparameters of dimensionality
10 and 7, 850.

Optimizing 7, 850 hyperparameters Optimizing 10 hyperparameters

0 100 200 300 400 500 600 700 800
Runtime in seconds

0.5

0.6

0.7

0.8

0.9

Lo
ss

 L

Random search LValid.

Hypernet LValid. (wφ ∗(λ̂))

Random search LTest

Hypernet LTest(wφ ∗(λ̂))

0 200 400 600 800
Runtime in seconds

0.5

0.6

0.7

0.8

0.9

Lo
ss

 L

Bayesian opt. LValid.

Bayesian opt. LTest

Benefits of Hyper Training

• Our method provides two potential benefits. These are a better inductive bias by
learning the weights instead of loss, and viewing many hyperparameter settings dur-
ing training.

• We analyze this by comparing our algorithm to Bayesian optimization with 25 samples
and a hypernet trained on the same 25 samples.

0.6 0.7 0.8 0.9 1.0 1.10.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

G
P 

M
ea

n
Pr

ed
ic

te
d 

Lo
ss

0.6 0.7 0.8 0.9 1.0 1.10.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Fi
xe

d 
H

yp
er

ne
t

Pr
ed

ic
te

d 
Lo

ss

0.6 0.7 0.8 0.9 1.0 1.1
True loss

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Sa
m

pl
ed

 H
yp

er
ne

t
Pr

ed
ic

te
d 

Lo
ss

0.2 0.0 0.2 0.4 0.6

Fr
eq

ue
nc

y

0.2 0.0 0.2 0.4 0.6

Fr
eq

ue
nc

y

0.2 0.0 0.2 0.4 0.6
Predicted loss - true loss

Fr
eq

ue
nc

y

Figure 3: Comparing three approaches to predicting validation loss. First row: A Gaussian process, fit
on a small set of hyperparameters and the corresponding validation losses. Second row: A hypernet, fit
on the same small set of hyperparameters and the corresponding optimized weights. Third row: Our
proposed method, a hypernet trained with stochastically sampled hyperparameters. Left: The distribution
of predicted and true losses. The diagonal black line is where predicted loss equals true loss. Right: The
distribution of differences between predicted and true losses. The Gaussian process often under-predicts
the true loss, while the hypernet trained on the same data tends to over-predict the true loss.

Conclusions

• We presented an algorithm that efficiently learns a differentiable approximation to a
best-response for hyperparameter optimization.

• Hypernets can provide a better inductive bias for hyperparameter optimization than
Bayesian optimization.

Parameter w Hyp
erp

ara
mete

r λ
Lo

ss
 L

T
ra

in
(w
,λ

)

L(w∗(λ), λ)

L(wφ ∗(λ), λ)

λ̂

w∗(λ̂),wφ ∗(λ̂)

Parameter w Hyp
erp

ara
mete

r λ
Lo

ss
 L

V
al

id
.
(w

)

λ ∗

w∗(λ ∗)

λφ ∗

wφ ∗(λφ ∗)

Figure 4: A visualization of exact (blue) and approximate (red) optimal weights as a function of given
hyperparameters. Left: The training loss surface. Right: The validation loss surface. The approximately
optimal weights wφ∗ are output by a linear model fit at λ̂. The true optimal hyperparameter is λ∗, while
the hyperparameter estimated using approximately optimal weights is nearby at λφ∗.


