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Abstract

In this paper we develop a novel methodology to simultaneously optimize locations

and designs for a set of new facilities facing competition from some pre-existing fa-

cilities. Known as the Competitive Facility Location and Design Problem (GFLDP),

this model was previously only solvable when a limited number of design scenarios was

pre-specified. Our methodology removes this limitation and allows for solving of much

more realistic models. The results are illustrated with a small case study.
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1 Introduction

OUTLINE: Relationship to GFLDP. Limitation of the general GFLDP with design scenar-

ios: where do scenarios come from? Goal of current paper is to provide a complete solution

to the GFLDP with unlimited number of potential designs.

We start by focusing on the single-facility GFLDP, developing an efficient polynomial-

time algorithm for this case. This is accomplished by showing that the problem can be

decomposed into two sub-problems: the Single-Facility Design Problem (SFDP), which can

be solved efficiently, and a simple search problem. Applying parametric analysis to the

optimal solution for (SDFP) we show, under relatively mild assumptions, that the facility

attractiveness is a concave function of the design budget; this function is derived in closed

form.

We next apply this methodology to the multiple-facility GFLDP. The basic problem is

shown to be non-linear in both the objective and the constraints. However, most of the

non-linearities can be expressed with concave functions. By building on the TLA-method

developed earlier, which allows for an efficient linear approximation of a concave function to

the specified degree of accuracy, we develop an “iterated TLA” approach which allows us to

solve the CDFLP by solving a single linear integer program.

We analyze the efficiency of this approach through a set of numerical experiments and

illustrate our model through a small case study.

2 Definitions and Preliminaries

We assume that customer demand is concentrated in a discrete subset N of size n = |N | of

metric space P equipped with a distance function dij, i, j ∈ N (if P represent a network

with node set N , the function dij can be chosen to be the shortest path distance). Each of the

n points represents a “market”, i.e., a set of customers who are homogeneous with respect

to their facility preferences and expenditure decisions; in view of assumed homogeneity we

will often refer to each i ∈ N as “customer i”. The maximum potential demand for i ∈ N is

given by wi; this can be usefully viewed as the available “expenditure budget” for customer
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i, who, depending on the attractiveness and convenience of service offered by the facilities,

may choose to spend all, part, or none of it.

The set of potential facility locations P is assumed to be discrete; without loss of gen-

erality, we assume P ⊂ N (note that dummy customer nodes with wi = 0 can always be

added to N). There may be pre-existing competitive facilities on the network located in set

C with P ∩NC = ∅.

As discussed in the introduction, our goal is to develop a modeling framework that

is flexible enough to incorporate a wide variety of facility location and demand models,

including most of the typical models in location literature. We first describe the basic

components of our modeling structure, and then provide more details for each component

below.

• The decision-maker (DM) makes two basic sets of decisions: “where” and “what”.

More specifically, the first decision is to select a set S ⊆ P of locations for the new

facilities, which includes deciding on |S| - the number of new facilities to be opened.

Then, for each j ∈ S, the DM must determine the “design” of facility j by specifying

the values of |K| design characteristics, yielding the attractiveness value of Aj. The

mechanism underlying Aj is described later. Note that to simplify the notation (and

the task of estimating the model parameters), we will assume that the perception

of attractiveness Aj of facility j is the same for all customers i ∈ N , though some

extensions to customer-specific forms will be discussed later. The locations of opened

facilities and their design (as well as the location and design of competitive facilities)

is viewed as “offered service” by the customers.

• Each customer i ∈ N evaluates the individual attractiveness (utility) of each facility

j ∈ S:

uij = Ajg(dij),where g(d) ∈ [0, 1], g(0) = 1 is non-increasing and convex in d (1)

Note that since uij which depends on both the proximity dij of faclity j and its perceived

attractiveness, the utilities different customers derive from facility j are different, even
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though the perceived attractiveness Aj is the same for all customers. The function

g(d) ≥ 0 represents distance sensitivity of customers; it is assumed to be non-decreasing

with g(0) = 1.

• Next each customer computes the total value (utility) of all new facilities Ui(S), i ∈ N .

We consider two alternative forms of this total utility function:

UA
i (S) =

∑
i∈S

uij (2)

UM
i (S) = [max

j∈S
uij] ∗ I{max

j∈S
uij ≥ max

j∈C
uij} (3)

Thus, under UA
i (S) specification, the customer i simply adds utilities derived from all

facilities in S. As we will see later, this specification is required to represent location

models with proportional or “gravity-type” assignments, where customers patronize

more than one facility and facilities compete for market share of customer’s expen-

ditures. The second mechanism, UM
i (S) is needed to represent all-or-nothing assign-

ments, where customer only patronizes the utility-maximizing facility. Note that if

customers’ utility is maximized by a facility belonging to the competitor (i.e. j ∈ C)

then UM
i (S) = 0, otherwise it is set to the maximum utility derived from j ∈ S. Of

course other utility aggregation mechanisms can be specified as well, but as we will see

below, these two mechanisms provide sufficient flexibility to represent many previously-

described location models. When either mechanism can be used, we will simply refer

to Ui(S) as the total utility.

• The final decision made by the customer i ∈ N is how much of the available budget

to spend on the service offered by the facilities in S. We use V (Ui(S)) to repre-

sent the proportion of the available expenditure demand that customer i ∈ N spends

on service offered by facilities in S, where we assume that V (U)) ∈ [0, 1], V (0) =

1, limU→∞ V (U) = 1 and V (U) is concave, non-decreasing, and twice-differentiable

function in U . The total expenditure for i ∈ N is given by wiV (Ui(S). Note that

even though the form of the demand function V (U) is assumed to be the same for all

customers, no substantial difficulties arise from making this form customer-specific.
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• Finally, the model is completed by specifying the objective of the DM. Letting C(U(S), S)

represent the cost of locating new facilities in set S and ensuring utility vector U(S) =

[Ui(S), . . . , Un(S)] for customers in N (we will specify the functional form of C(U, S)

below), the GDFLP can be stated in compact form as follows:

maxZ(S) = {
∑
i∈N

wiV (Ui(S)) | S ⊂ P, |S| ≤ m,C(U(S), S) ≤ b}, (4)

where m represents the maximum number of facilities that can be located, and b

represents the total budget available to the DM. An alternative formulation, where

DM seeks to maximize net revenue and the budget constraint is dropped, will be

discussed in Section 6.

To complete the model description we next specify how Aj is related to design decisions

and the associated costs.

Facility Design

Following [2], we assume that each potential site j possesses a “base” attractiveness level of

αj ≥ 0 which can be interpreted as the attractiveness of the basic (“bare-bones”) facility that

could feasibly be located at j - i.e., that would satisfy all required regulations and municipal

codes with respect to safety, parking, etc. at the minimal level. Note that αj incorporates

site-specific characteristics such as visibility, ease of access, etc. We also assume that there

is set K of design characteristics with respect to which the facility can be further improved,

with the decision variables Yjk ≥ 0 representing the improvement of the basic design along

characteristic k ∈ K, with the value Yjk = 0 if facility at site j ∈ S is not improved with

respect to characteristic k. The resulting attractiveness Aj of a facility at j ∈ P is assumed

to be a log-linear function:

Aj = αj

∏
k∈K

(1 + Yjk)
θk (5)

(throughout this paper we adopt the convention that the product evaluated over an empty

set equals to 1, thus Aj = αj when K = ∅). As discussed in [2], this form reflects the most
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common approaches to estimating the impact of characteristics of goods and services using

Multi-Competitive Interaction (MCI) and related models (see e.g., Nakanishi and Cooper

[14]); the methodology for estimating the values of θk, k ∈ K is well-developed.

We will typically assume that Yjk ∈ [0, ymax
k ], i.e., the value of each design character-

istic can be adjusted continuously within this interval, even though for some qualitative

characteristics only discrete values may make sense; the extension to incorporate qualitative

characteristics will be discussed in Section ?? below. We make the following assumption

regarding the parameters θk, k ∈ K:

Assumption 1: For all k ∈ K, θk ≤ 1.

This assumption ensures that Aj is concave with respect to every design variable Yjk, k ∈ K,

implying that the marginal attractiveness is decreasing as the design improvements are made;

this is a very common assumption is economics literature. For some of our results it will be

necessary to make a stronger assumption:

Assumption 2:
∑

k∈K θk ≤ 1.

As will be shown below, Assumption 2 ensures that Aj is concave with respect to the over-

all expenditure on improvements for facility j; we believe this assumption should also be

reasonable in most cases. We will indicate which of our results below require the stronger

Assumption 2 instead of Assumption 1.

We note that it may be natural to regard travel distance as just another characteristic

of a facility, which results in the following specification of the term g(d) in (1):

g(d) = (1 + d)−β, (6)

where β > 0 is a distance elasticity parameter playing the same role as θk, k ∈ K above. This

leads to log-linear form for the individual attractiveness terms uij, i ∈ N, j ∈ S. While this

form simplifies practical task of estimating model parameters (since the MCI methodology

can be used), the specific form of g(d) is not required in our methodology as long as the

previously-stated properties (non-decreasing, g(0) = 1) are satisfied.

To complete the formulation we define the facility costs as follows. For a potential

location j ∈ P , the parameter fj ≥ 0 represents the fixed cost of locating a facility with
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basic design at j, while cjk is the variable cost of improving the design characteristic k by

one unit (we assume that both fixed and variable costs are properly annualized). Thus, the

cost of locating a facility with design attributes Yj1, . . . , YjK is given by

Bj = fj +
K∑
k=1

cjkYjk, (7)

where Bj (a decision variable) is the total allocated budget for a new facility at j ∈ P .

This expression assumes linear cost structure with respect to design characteristics. While

this is likely a simplification of the actual costs involved in design decisions, the linearity

enables us to develop efficient solution approaches below; we will discuss possible generaliza-

tions in Section 6. In view of the previous expression, the overall costs of locating facilities

in set S to induce the customer utility vector U(S) are given by

C(U(S);S) =
∑
j∈S

Bj,

and the budget constraint in GFLDP formulation (4) can be rewritten as
∑

j∈S Bj ≤ b.

This completes the formulation of GFLDP. Before developing solution strategies for this

model, we first demonstrate the flexibility of the framework outlined above by showing how

it generalizes a number of previously analyzed location problems.

2.1 Location Models with Proportional Allocation: GFLDP Rep-

resentation

In this class of models each customer is assumed to divide their spending between several

(potentially all) open facilities in proportion to the utility derived from each facility. These

models, which have a number of names (gravity-type, Huff-type, market share games, com-

petitive interaction models, multinomial logit models) date back to the work of Huff [13]; see

Gosh et al [10] for a good introduction and Berman et al [4] for a more recent overview. The

basic model of this type assumes inelastic demand, (i.e. each customer i ∈ N spends the
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maximum amount wi) and no flexibility in facility design (i.e., the set of changeable design

characteristics K = ∅). The utility customer i ∈ N derives from each facility j ∈ S ∪NC is

given by

uij = αjg(dij),

where g(d) is some decreasing function of distance (note that for some popular forms, e.g.

g(d) = d−2, which was used in Huff’s original paper [13] and many subsequent publications,

one must make sure that some minimal distance 0 < dϵ < dij exists for all i ∈ N, j ∈ S).

Once a location set is defined, the market shares are computed via

MSij =
uij∑

k∈S∪NC uik

, i ∈ N, j ∈ S ∪NC (8)

and the problem is to find a location set S, |S| ≤ m to maximize

ZPA(S) =
∑
i∈N

∑
j∈S

wiMSij. (9)

In words, each facility (which includes both, the new facilities in S and competitive facilities

in NC) receives the share MSij of customers demand wi that is proportional to its utility

uij for customer i ∈ N ; the goal is to intercept as much demand at the new facilities as

possible. We also observe that
∑

j∈S∪NC MSij = 1 and thus the problem loses meaning

when NC = ∅, as ZPA(S) =
∑

i∈N wi irrespective of S. To recast this problem into our

framework we observe that since there are no design characteristics to optimize, Aj = αj,

and thus uij is already in the form given by (1) above. We use the additive form (2) to define

Ui =
∑

i∈S uij - the total utility customer i derives from the new facilities in S and define

the demand function

V (Ui(S)) =
Ui

Ui + UC
i

, (10)

where UC
i =

∑
j∈NC uij is the total utility derived by i ∈ N from the competitive facilities

- a constant that can be pre-computed since NC is assumed to be known. It is easy to see

that ZPA(S) =
∑

i∈N wiV (Ui(S)) and that V (U) is concave and non-decreasing in U . Thus,
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the basic proportional allocation model is easily representable in our GFLDP framework.

We also discuss two extensions of the basic model. The first one, described in Berman and

Krass [5], introduced the elastic demand wiei(Ui) = e(
∑

j∈S∪NC uij) where e(U) ∈ [0, 1] is a

concave non-decreasing function of the total utility the customer derives from all facilities on

the network, in place of wi in the objective function ZPA in (9). This makes the proportional

allocation model meaningful even when NC = ∅ since locating new facilities increases the

overall utility and thus captures more of customer’s potential expenditure wi (which is now

treated as the maximal expenditure of customer i ∈ N , same as in our GFLDP). This

elastic demand extension is also easily representable as GFLDP by simply replacing Ui with

Uie(Ui + UC
i ) in the numerator of V (Ui(S)) in (10) above.

The idea of flexible design was introduced in Aboolian et al [2] using essentially the same

framework as in the current paper, with the key difference that only a finite number of pre-

determined design scenarios was allowed. Thus, GFLDP can be seen as an extension where

an infinite number of potential design scenarios is considered for each facility.

2.2 Full Capture Location Models: GFLDP Representation

The second major class of location models (in terms of customer-facility interaction) are

the “full-capture” (also known as “all-or-nothing” models) where each customer i ∈ N is

assumed to patronize only the facility j∗ that is utility-maximizing for them. This class of

models date back to the work of Revelle [15] and Hakimi [11]. We start with the MAXCAP

model of [15], which generalizes m−median and related model. It is assumed that for each

j ∈ P ∪NC , a customer at i ∈ N derives “benefit” rij when obtaining service from facility

j, and the objective is to find S, |S| ≤ m which maximizes

ZFC(S) =
∑
i∈N

∑
j∗∈S

wirij∗ ,

where j∗ = argmaxj∈S∪NC rij with ties typically broken in favor of the new facility (i.e.,

if the maximum benefit is achieved at both an existing and a new facility, then j∗ ∈ S is

selected). To recast this into GFLDP form we can simply treat the benefits rij as reciprocals
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of distances dij = 1/rij after assuming, without loss of generality, that rij values are scaled

to be in (0, 1]. Next we set K = ∅, αj = 1 for all j ∈ P ∪NC and g(d) = 1/d. It can be seen

that uij = rij in this case. Selecting Ui = UM in (3) we see than Ui = rij∗ for all i and the

with Vi(Ui) = Ui we have ZFC(S) =
∑

i∈S wiV (Ui(S)) showing that MAXCAP is a special

case of GFLDP.

We can extend the basic model by allowing for elastic demand: this is easily accomplished

by re-defining Vi(U) to be a concave non-decreasing function of U with range in [0, 1]. We

can also add the design component by re-defining rij = Aj(y)g(dij), where Aj and g(D) are

given by (5), (1), respectively.

Having demonstrated the versatility of GFLDP framework we next address the solvability

issues. While the (GFLDP) can be formulated as a non-linear integer program using the

standard binary location variables Xj augmented with the design variables Yjk for j ∈ S, k ∈

K, the practicality of this formulation is doubtful since the demand function Vi(Ui(S))

is a non-linear functions of the utility vector, which, in turn, is non-linear in the design

variables Y. Thus, direct solution approaches are unlikely to be successful. We thus develop

an alternate approach by first focusing on the single-facility optimal design problem which

arises once the decision to locate a facility at j ∈ P has been made.

3 Single Facility Design Problem (SFDP)

In this section we first assume that we have already decided to locate a new facility at

some location j ∈ P and spend at most Bj ≤ b on this facility. The problem we address

is how to determine the optimal design of this facility for the given budget Bj. We then

perform parametric analysis with respect to Bj to identify the optimal design for any budget

level. This problem may be of interest in its own right for the case where only one new

facility is to be located: se set bj = b and solve SDFP for every potential j ∈ P . With

respect to the original multi-facility setting, the methodology we develop for SDFP allows

the decision-maker to reduce the dimensionality the one involving multiple design dimensions

yjk, k = 1, . . . , K to just one dimension, Bj ∈ [0, b] for every j ∈ P . We will use this reduction
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in Section 4 to construct efficient algorithms for the multiple-location (GFLDP).

Suppose we are designing a new facility to be constructed at location j. To simplify the

notation in this section, we will drop the subscript j (replacing fj by f , etc.). Since the cost

of the basic design is f , this implies that B ≥ f (otherwise no facility can be constructed at

j) and the amount to be spent on design improvements is given by B − f . Note that the

overall objective Z(S) given by (4) above is clearly non-decreasing in the components ui of

the utility vector. Moreover, by (1), each utility component ui is an increasing linear function

of the attractiveness A. It follows that the objective function of (GFLDP) is maximized by

maximizing A, leading to the following formulation for (SFDP):

maxAj(Bj) ≡ A(B) = α
K∏
k=1

(1 + yk)
θk (11)

Subject to∑K
k=1 ckyk ≤ B − f (12)

0 ≤ yk ≤ ymax
k , k ∈ K. (13)

We will assume throughout this section that 0 < B−f =<
∑

k∈K cky
max
k , since otherwise

the problem is either infeasible, or admits the trivial optimal solution yk = ymax
k for all k.

3.1 Solving the SFDP for a Given B

The (SFDP) can be recognized as a non-linear knapsack problem. Moreover, by Assumption

1 we have θk ≤ 1 for all k ∈ K, implying that the objective function is concave. Taking

logarithm of the objective, we see that (SFDP) is equivalent to a separable, concave knapsack

problem. This class of problems is fairly well-solved; the complexity is known to be not much

harder than that of the linear integer knapsack problem - we refer the reader to Bretthauer

and Shetty [8] for a review.

We start with the following result, that develops the closed-form solution for the case

where the upper and lower bounds in (13) are automatically satisfied by the unconstrained

solution.
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Lemma 1 For k ∈ K, let

ŷk(K,B) =
θk(B − f +

∑
r∈K cr)

ck
∑

r∈K θr
− 1. (14)

If 0 ≤ ŷk(K,B) ≤ ymax
k for all k ∈ K, then ŷk(K,B), k ∈ K is an optimal solution to

(SFDP).

Proof: For convenience, we make the variable substitution y
k
= yk + 1, let B = B − f +∑

k∈K ck, and drop the bounds (13). This leads to the following problem:

max{
K∏
k=1

yθk
k
|

K∑
k=1

ckyk ≤ B}. (15)

Since this is a concave maximization problem with linear constraints, the first-order

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality, provided

the lower bounds on y
k
are satisfied. This results in the following system of equations, where

λ is the multiplier associated with the knapsack constraint:

y
k
= (

∏
r∈K

yθr
r
)
θk
λck

, (16)

and
∑

k∈K ckyk = B (observe that since the upper bounds have been relaxed, the knapsack

constraint must be tight at optimality), together with λ ≥ 0. Substituting the first equation

above into the second, we obtain

λ = (
∏
r∈K

yθr
r
)

∑
r∈K θr

B
≥ 0,

which, when substituted back into (16) yields y
k
= ŷk(K,B) + 1, k ∈ K. Therefore,

ŷk(K,B), k ∈ K solves (SFDP), since the upper and lower bounds (13) are satisfied by

hypothesis.
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We now present the following algorithm for (SFDP).

Algorithm 1

Step 0 Set i = 0 , K i = K, U i = Li = ∅, Bi = B − f .

Step 1 Set i = i + 1. Compute ŷk(K
i, Bi), k ∈ K using (14) and set yik = ŷk(K

i, Bi) for

k ∈ Ki, yik = 0 for k ∈ Li and yi = ymax
k for k ∈ U i.

If 0 ≤ yik ≤ ymax
k for k ∈ Ki, STOP and output current yik, k ∈ K as the optimal

solution to (SFDP); else, proceed to Step 2.

Step 2 Let

s̄ =
∑
k∈Ki

ck(y
i
k − ymax

k ) · I{yik > ymax
k }; s =

∑
k∈Ki

ck(−yik) · I{yik < 0},

where I{ } is the indicator function. If (s ≥ s̄) then set Li+1 = Li
∪
{k ∈ Ki|yik <

0}, Bi+1 = Bi

Else set U i+1 = U i
∪
{k ∈ Ki|yik > ymax

k }, Bi+1 = B −
∑

k∈U i+1 ymax
k ck .

Set Ki+1 = K − U i+1 − Li+1, i = i+ 1, and repeat Step 1.

At each step i the sets Ki, U i, and Li represent the variables that are “free”, have been

“pegged” to the upper bound ymax
k , and have been pegged to the lower bound 0, respectively.

The budget Bi represents the available budget for the free variables, which is the original

budget minus what has been used on the pegged variables in U i (the variables in Li are set

to 0, and thus do not consume any budget). At iteration i we compute the unconstrained

solution relaxation (14) over the “free” variables with the remaining budget. If this solution

is feasible, it is optimal. Else, the total sum of violations of the upper and lower bounds

is computed and, depending on which is larger, corresponding variables are pegged to their

upper or lower bounds; the process continues until no violations remain. Since at each step

of the algorithm, at least one new variables is pegged, the number of iterations is at most

|K| and the total time complexity is at most O(|K|2) (since in practical applications the
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number of design characteristics which can be varied is typically small, the algorithm will

execute essentially instantaneously).

The correctness of the algorithm is established in the following result. Part (1) follows

from Lemma 1 above and Theorem 4 in [7]; part (2) follows since the optimal solution must

satisfy the KKT conditions.

Theorem 1 Assume B <
∑

k∈K cky
max
k . Then:

(1) Algorithm 1 computes an optimal solution yk, k ∈ K to (SFDP) in O(|K|2) time.

(2) Let L,U be the final values of sets Li, U i produced by Algorithm 1. Then

ŷk(K − L− U,B − f −
∑
r∈U

cry
max
r )


< 0 if k ∈ L

> ymax
k if k ∈ U

= yk ∈ [0, ymax
k ] if k ∈ K − L− U

(17)

It is interesting to observe from equations (14) how the available budget is allocated:

the amount allocated to characteristic k depends on the relative attractiveness θk/
∑

r∈K θr

divided by the unit cost ck, i.e., larger budget will be allocated to the characteristics that

have higher relative attractiveness per dollar. Note also that this shows that in estimating

θk parameters, only the relative values have the effect on the optimal design. We illustrate

Algorithm 1 and the previous result with the following example.

Example 1. Consider an instance of (SFDP) with three design characteristics and the

following data:

ymax = (1, 1, 1), c = (.5, 1, 2), and θ = (.5, .3, .1)

(where we provide components of the corresponding vectors). Suppose f = 0 and B = .7.

In the first iteration of Step 1 of Algorithm 1 we compute ŷk(K,B) with K = {1, 2, 3},

obtaining:

y1 = ŷ(K, .7) = (3.667, .4,−.767).
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Note that ŷ1 > ymax
k , and ŷ3 < 0, thus the current solution is not feasible and we compute

s̄ = c1 ∗ (ŷ1 − ymax
1 ) = 1.333, s = c3 ∗ (−ŷ3) = 1.533.

Since s > s̄, we peg the last component to 0, getting L1 = {3}, U1 = ∅, B1 = B = .7 and

proceed to iteration 2. After two more iterations the algorithm terminates with the solution:

y = (1, .2, 0), L = {3}, U = {1},

indicating that the first component has been pegged at the upper bound and the third at

the lower bound. Note that K − L − U = {2}, B −
∑

r∈U cry
max
r = .7 − .5 = .2, and

ŷ({2}, .2) = (3, .2,−.8), verifying part 2 of Theorem 2 since the component in U exceeds the

upper bound and the component in L is negative.

3.2 Parametric Analysis with Respect to Budget B

The previous results also allow us to perform parametric analysis of the SFDP with respect

to the available budget B. This analysis will be used to extend the single-facility results to

multi-facility settings in Section 4 below.

Note that, in view of (11, 14) and (17), the total attractiveness A can be viewed as a

function A(B) of the specified budget B:

A(B) = α
∏

k∈K−L−U

[(B−f+
∑

r∈K−L−U

cr−
∑
r∈U

cry
max
r )

θk
ck

∑
r∈K−L−U θr

]θk
∏
k∈U

(ymax
k +1)θk . (18)

For fixed sets L,U , let

γ = f −
∑

r∈K−L−U

cr +
∑
r∈U

cry
max
r ,

and

δ =
∏

k∈K−L−U

[
θk

ck
∑

r∈K−L−U θr
]θk

∏
k∈U

(ymax
k + 1)θk .
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Then, (18) takes the form

A(B) = αδ(B − γ)
∑

k∈K−L−U θk , (19)

where δ > 0 and γ < B. This function is continuous and increasing in B and is concave in

B if
∑

k∈K−L−U θk ≤ 1, i.e., when Assumption 2 holds. This also provides an interpretation

of Assumption 2: it ensures that A(B) is concave, i.e., that the marginal attractiveness is

non-increasing per unit expenditure on design improvements (versus Assumption 1 which

imposes a similar condition with respect to each individual design characteristic).

Observe, however, that the sets L,U are themselves affected by the value of B; thus the

statements above holds only for values of B where sets L and U do not change. It is obvious

from (14) and (17) that for any value of B we can find values B, B̄ such that sets L,U are

invariant in the interval B ∈ [B, B̄]. It then follows from (19) that for B ∈ [B, B̄], A(B) is

non-decreasing, and is concave in B if Assumption 2 holds. The breakpoints B, B̄ designate

budget levels where the membership of sets L,U changes.

Determining the breakpoints is computationally easy. Consider first the upper breakpoint

B̄. Since ŷk(K,B) is linear in B, if ŷk(K − L− U,B −
∑

j∈U cjy
max
j ) > ymax

k for the current

level of B, it will continue to be so as B is increased. Thus, as B is increased, any k ∈ U

will remain in set U . Similarly, any k ̸∈ L will remain outside of L (since the corresponding

component of ŷk will remain positive). Thus, B̄ is reached when either some element leaves

L or some element enters U . Consider the former case first. Suppose k ∈ L, implying that

ŷk(K − L− U,B −
∑

j∈U cjy
max
j ) < 0. By (14) this is equivalent to

ck
θk

∑
r∈K−U−L

θr +
∑
r∈U

ymax
r cr −

∑
r∈K−L−U

cr > B − f,

and as B is increased, k will leave L when the inequality above no longer holds. The first k

to leave L will be the one for which the expression of the left-hand side is the smallest. A

similar condition is easily derived for when k which is currently not in U will enter U . This
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leads to the following expression:

B̄ = min{mink∈L{f + ck
θk

∑
r∈K−U−L θr +

∑
r∈U ymax

r cr −
∑

r∈K−L−U cr},

mink∈K−L−U{
(ymax

k +1)ck
θk

∑
r∈K−U−L θr +

∑
r∈U ymax

r cr −
∑

r∈K−L−U cr + f}}
. (20)

Similarly, the lower endpoint B occurs when some k ∈ U leaves U or some k ∈ K−L−U

enters L as B is reduced, resulting in the following condition.

B = max{maxk∈K−L−U{ ck
θk

∑
r∈K−U−L θr +

∑
r∈U ymax

r cr −
∑

r∈K−L−U cr + f},

maxk∈U{
(ymax

k +1)ck
θk

∑
r∈K−U−L θr +

∑
r∈U ymax

r cr −
∑

r∈K−L−U cr + f}}
. (21)

To identify all breakpoints of A(B) the following procedure can be followed. First, note

that the relevant range of B = [f,
∑

k∈K cky
max
k ], since at the lower endpoint the optimal

solution is yk = 0, k ∈ K and at the upper endpoint it is yk = ymax
k , k ∈ K. We thus

initialize B0 = f and the set of breakpoints B = {f,
∑

k∈K cky
max
k }, choose some small

ϵ > 0, set m = 0 and proceed as follows:

Algorithm 2

1. Set m = m+1, B = Bm−1+ ϵ, and apply Algorithm 1 to find the optimal solution and

the set L,U corresponding to the current B.

2. Use (21) to find the lower breakpoint B. If B ̸= Bm−1, the step size was too large. Set

ϵ = ϵ/2 and repeat Step 1. Else, proceed to Step 3.

3. Use (20) to find the next breakpoint Bm. If Bm =
∑

k∈K cky
max
k , stop: all budgetary

breakpoints have been found. Else, add Bm to B and repeat Step 1.

The parametric analysis is summarized in the following result:

Theorem 2 There exist a finite set of increasing breakpoints B1, . . . , BM , with B1 = f and

BM =
∑

k∈K cky
max
k such that

(1) For m = 1, . . . ,M − 1 and B ∈ [Bm, Bm+1], the optimal value A(B) of the objective
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function of (SFDP) is given by (18). Moreover, the number of breakpoints M ≤ 2|K|.

(2) The function A(B) is non-decreasing and continuous for B ∈ (0, BM ]

(3) If
∑

k∈K θk ≤ 1 (i.e., Assumption 2 holds), then A(B) is concave for B ∈ [B1, BM ].

Proof: Parts (1) and (2) follow directly from the discussion preceding the Theorem (conti-

nuity follows since the value of A(B) as B → Bm is the same whether the breakpoint Bm is

approached from above or below). The inequality M ≤ 2|K| follows by observing that each

k ∈ K can go through at most two transitions (once to leave L and once to enter U).

To prove part (3), first note that, as discussed earlier, A(B) is concave on the inter-

val between any two breakpoints, and thus is piece-wise concave for B ∈ [B1, BM ]. It

remains to prove that A′(Bm)
+ ≥ A′(Bm)

− for any breakpoint Bm,m ∈ {1, . . . ,M}, where

A′(B)+, A′(B)− are left and right derivatives, respectively.

Consider some breakpoint Bm, 1 < m < M and let Lm, Um, Km be the sets L,U,K

corresponding to B ∈ [Bm−1, Bm]. From the discussion above we know that there are two

cases as the breakpoint Bm is crossed: (a) Lm+1 ⊂ Lm i.e., some variable that was pegged

to its lower bound of 0 is unpegged, and (b) Um ⊂ Um+1 i.e., some variable that was not

pegged is now pegged to its upper bound (both cases can occur simultaneously). Let Am(B)

and Am+1(B) be the corresponding forms of the function A(B) defined by (19) - recall that

the sets L,U,K affects both the constants and the exponents in this definition. Note that

A(B) =

 Am(B) for B ∈ [Bm−1, Bm]

Am+1(B) for B ∈ [Bm, Bm+1]

with Am(Bm) = Am+1(Bm) by continuity of A(B). Suppose case (a) holds. Then for any

B ∈ [Bm−1, Bm] we must have Am+1(B) ≥ Am(B) since there is one or more variable pegged

to 0 under Lm that is unrestricted under Lm+1. Since both Am(B) and Am+1(B) are concave

and increasing, and have the same value at Bm, It follows that A
′
m(Bm) ≥ A′

m+1(Bm). Now,

A′(Bm)
+ = A′

m(Bm) ≥ A′
m+1(Bm) = A′(Bm)

−, establishing concavity of A(B) at Bm.

Similarly, if case (b) holds then for B ∈ [Bm, Bm+1] we must have Am+1(B) ≤ Am(B)

since one or more variables that are pegged in Um+1 are unrestricted in Um. Thus Am(B) ≥
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Am+1(B) must hold for all B ∈ [Bm, Bm+1]. As before, since both functions are concave and

increasing, this implies that A′
m(Bm) > A′

m+1(B). Thus A′(Bm)
− = A′

m+1(Bm) ≤ A′
m(Bm) =

A′(Bm)
+, which completes the proof.

�

We illustrate the parametric analysis with the following example.

Example 2. Continuing with the setting of Example 1, we now wish to identify the set of

budgetary breakpoints B. We apply Algorithm 2 with ϵ = .01. Since f = 0 and
∑

k cky
max
k =

.5 + 1 + 2 = 3.5, the relevant search range is B ∈ [0, 3.5] (for B > 3.5, all yk = ymax
k = 1).

We start with B = {0}, set B1 = ϵ and apply Algorithm 1. This results in the optimal

solution: (y1, y2, y3) = (.02, 0, 0) with L = {2, 3} and U = ∅. Next we compute B̄ = .05, B =

0 using (20), (21), respectively. Since B = 0, i.e., the previous breakpoint, no breakpoints

have been missed by taking too large a step. We thus add the upper breakpoint to the set

B = {0, 0.5}, set B2 = 0.5 + ϵ and preform another iteration of Algorithm 2. The new

optimal solution is (y1, y2, y3) = (1, 0.01, 0) with L = {3}, U = {1} (note that node 1 entered

U , while node 2 simultaneously left L). Here B = .05, so no breakpoints have been missed

and B̄ = 1.5, leading to B = {0, .5, 1.5}. At the next iteration with B3 = 1.5 + ϵ we obtain

(y1, y2, y3) = (1, 1, 0.005), L = ∅, U = {1, 2}, with B = 1.5, B̄ = 3.5. Since the upper

breakpoint has reached the limit of the relevant range, the algorithm stops with the final

set of breakpoints B = {0, .5, 1.5, 3.5}. Note that for each budgetary range we have also

computed the corresponding sets L,U , enabling us to evaluate A(B) for any B ≥ 0.

Remark 1 It is important to note the role of Assumption 2. It is not necessary for the

derivation of the optimal solution to the (SFDP) presented in Algorithm 1, or equations (18)

and (19), which form the basis of the parametric analysis. Algorithm 2 also remains valid

yielding the function A(B) that is continuous, non-decreasing and differentiable except at

the breakpoints when Assumption 2 does not hold. However, the concavity of A(B), or even

piece-wise concavity between the breakpoints, may be violated.
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4 Multi-Facility GFLDP

In this section we show how the (SFDP) solution methodology developed above can be

applied to multi-facility (GFLDP) problem described earlier. Throughout this section we

will assume that Assumption 2 holds, allowing us to treat the attractiveness Aj(Bj) as a

concave function of Bj in view of Theorem 2.

We start by formulating the problem as a non-linear integer program and then apply

an extension of the TLA technique developed in [1] to develop an approximation with pre-

specified level of relative error that can be obtained by solving a single linear integer program.

The primary decision variables are: xj, j ∈ P , with the value of xj = 1 indicating that a

facility is opened at j and xj = 0 otherwise. In addition, we use continuous decision variables

Bj ≥ 0, to represent the design improvement budget and Uij ≥ 0, i ∈ N to represent the

utility of facility at j to customers i. We also use parameter gij = g(dij) for i ∈ N, j ∈ P .

Two version of the problem, depending on the type of the aggregator Ui used, are presented.

We start with the Ui = UA
i defined by (2); recall that this aggregator is used to represent

partial capture models. We call the corresponding formulation (GFLDP-A):

maxZ =
∑
i∈N

wiVi(Ui) (22)

Subject to∑
j∈P

Bj ≤ b (23)

∑
j∈P

xj ≤ m (24)

xjfj ≤ Bj ≤ xj(fj +
∑
k

cky
max
k ) j ∈ P (25)

Uij = Aj(Bj)gij i ∈ N, j ∈ P (26)

Ui =
∑
j∈P

Uij + UC
i i ∈ N (27)

Bj ≥ 0, Uij ≥ 0, xj ∈ {0, 1} i ∈ N, j ∈ P (28)
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The objective function (22) is given by (4). Constraint (23) and (24) place upper bounds

on the total budget and on the number of facilities, respectively. The next constraint 27)

defines the utility Ui for customers at i ∈ N (note that the values UC
i are parameters that

can be pre-computed). Constraint (25) ensures that fj +
∑

k ck ≥ Bj ≥ fj when xj = 1 (i.e.

Bj is large enough to cover the fixed construction costs, but does not exceed the maximum

improvement budget). On the other hand, if xj = 0 then this constraint forces Bj = 0.

Constraint (26) defines the term Uij of the utility vector for j ∈ P, i ∈ N using the definition

(1) and the expression (18) derived in the previous section. Note that Aj(0) = 0 and thus

the utilities will automatically be forced to 0 if no facility is open at j.

Next we formulate (GFLDP) with the Ui = UM
i aggregator defined by (3) and used to

represent full capture models. The corresponding formulation, referred to as (GFLDP-M),

differs from the one above only with respect to constraint (27) which is now replaced with

the following four constraints:

Ui ≤ Uij i ∈ N, j ∈ P (29)

Ui − UC
i Ri ≥ 0 i ∈ N (30)

Ui ≤ RiM i ∈ N (31)

Ri ∈ {0, 1} i ∈ N (32)

Here Ri, i ∈ N is a binary decision variable andM is a sufficiently large constant. Observe

that if for i ∈ N we have maxj∈P Uij ≥ UC
i then the solution Ui = maxj∈P Uij and Ri = 1

is feasible. Moreover, since the objective is increasing in Ui, this solution will be optimal.

If, on the other hand maxj∈P Uij < UC
i , then the only feasible solution is Ui = 0, Ri = 0.

Thus Ri can be interpreted as an indicator of whether customer i is captured by one of the

new facilities. Selecting M = maxj∈P αj

∏
k∈K ymax

k will ensure that constraint (31) does not

limit the value of Ui when Ri = 1.

Formulations (GFLDP-A) and (GFLDP-M) have non-linearities in both the objective

and the constraints. However, all non-linearities involve concave functions. In the next

section we show how concavity can be used to obtained a piece-wise linear approximations
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of the models above.

4.1 Piece-wise Linear Approximation

Our goal in this section is to develop a piece-wise linear “approximation scheme”, that is a

methodology for approximating non-linear terms in the formulations above with piece-wise

linear functions where the error bound is specified by the user. This will, in term, allow us

to develop linear Mixed Integer Programming formulations for our models that are accurate

to within a pre-specified tolerance level.

We follow the approach based on Tangent Line Approximation (TLA) developed by

Aboolian et al. in [1]. The main result we use is as follows:

Theorem 3 (from [1]) Consider z(u) =
∑

i∈N wiv(ui), where v(ui) ≥ 0 is a concave, non-

decreasing function of ui ∈ [umin, umax] for i ∈ N and 0 ≤ umin < umax are constants. Then

1. For a specified ϵ > 0 the TLA algorithm computes a concave piece-wise linear function

vϵ(u), u ∈ [umin, umax] such that

v(u) ≤ vϵ(u) ≤ (1 + ϵ)v(u) for all u ∈ [umin, umax], (33)

and the number of linear segments in vϵ is minimal for all piece-wise linear functions satis-

fying the inequality above.

2. Inequality z(u) ≤ zϵ(u) :=
∑

i∈N vL(ui) ≤ (1 + ϵ)z(u) holds for all u ∈ [umin, umax]n.

Note that zϵ(u) is a piece-wise linear function.

In words, the TLA procedure constructs a concave, piecewise linear upper-approximator

vϵ(u) for each concave component that meets the specified maximum error ϵ, and allows

us to replace the original n−dimensional non-linear function z(u) with a piece-wise linear

upper-approximator zϵ(u) that has the same maximum error. We will refer to vϵ(u) as the
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“ϵ-level TLA-approximator” of v(u) . Since representing a piece-wise linear function in an

MIP formulation requires a new decision variable for every linear segment, the fact that

the TLA approximator has minimal number of segments ensures that it is the most efficient

upper-approximator for the specified tolerance level ϵ.

Applying the previous result to the objective function of (GFLDP-A) and (GFLDP-

M) formulations, allows us to obtain piece-wise linear objectives. However, non-linearities

remain in the constraints since each Ui is itself a non-linear function of the budget variables

Bj, j ∈ S. Observing that the terms Ui are expressible as linear functions of A(Bj), j ∈ N ,

and that, by Theorem 2 (assuming Assumption 2 holds), A(Bj) is a concave function of Bj

for each j ∈ N , a natural idea is to apply the TLA procedure iteratively: first to construct

piece-wise linear approximators Aϵ(Bj), j ∈ N , yielding piece-wise linear U ϵ
i (B), and then

to each Vi(U), i ∈ N .

However, this “direct” approach may lead to violation of the specified error bound ϵ for

the piece-wise linear approximator of Vi(U) since it evaluates its argument at the “wrong”

place (at U ϵ
i instead of the true value Ui). The “correct” iterative TLA approach is developed

in the following result.

Theorem 4 For a specified error tolerance ϵ > 0 let ϕ =
√
1 + ϵ − 1 and constants 0 ≤

umin < umax, consider z(b) =
∑

i∈N vi (ui(b)), where for each i ∈ N ,

• vi(u) ≥ 0 is a concave, non-decreasing function of u ∈ [umin, umax], and

• ui(b) is a non-decreasing function of b = (b1, . . . , bn), bi ∈ [0, B] with the range ui(b) ∈

[umin, umax].

Suppose piece-wise linear approximators vϕi and uϕ
i are available such that for all i ∈ N ,

vi(u) ≤ vϕi (u) ≤ (1 + ϕ)vi(u) for u ∈ [umin, umax] ,and (34)

ui(b) ≤ uϕ
i (b) ≤ (1 + ϕ)ui(b) for all b ∈ [0, B]n. (35)
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Then for all i ∈ N and b ∈ [0, B]n,

vi(ui(b)) ≤ vϕi (u
ϕ
i (b)) ≤ (1 + ϵ)vi(ui(b)), and (36)

z(b) ≤ zϵ(b) :=
∑
i∈N

vϕi (u
ϕ
i (b)) ≤ (1 + ϵ)z(b). (37)

Note that zϵ(b) is a piece-wise linear function of b ∈ [0, B]n.

Proof: For i ∈ N and b ∈ [0, B]n, by (34) we have

vi(u
ϕ
i (b)) ≤ vϕi (u

ϕ
i (b)) ≤ (1 + ϕ)vi(u

ϕ
i (b)). (38)

Now, by (35) and since vi(u) is non-decreasing,

vi(ui(b)) ≤ vϕi (u
ϕ
i (b)) ≤ vi((1 + ϕ)ui(b)).

This establishes the first inequality in (36). Also, since vi(u) is concave and non-decreasing,

it follows that vi((1 + ϕ)ui(b)) ≤ (1 + ϕ)vi(ui(b)). Thus, using (38),

vϕi (u
ϕ
i (b)) ≤ (1 + ϕ)vi(u

ϕ
i (b)) ≤ (1 + ϕ)2vi(ui(b)),

which establishes the second inequality in (36) since (1 + ϕ)2 = (1 + ϵ). The relationship

(37) now follows directly, and the observation that zϵ(b) is piece-wise linear stems from the

fact that each term is a composition of two piece-wise linear functions.

�

The previous result allows us to develop linearized versions of (GDFLP-A) and (GDFLP-

M) formulations by (1) applying the TLA procedure to obtain estimator V ϕ
i (U) for each term

in the objective function, and (2) applying TLA procedure to each Aj(B) to obtain estimator

Aϕ
j (B), j ∈ P which also leads to the piece-wise linear estimator for Ui, i ∈ N .
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The approach is implemented as follows. For a specified maximum error ϵ > 0 we let ϕ =
√
1 + ϵ−1 and apply the TLA procedure to obtain Aϕ

j (Bj) for Bj ∈ [fj, fj+
∑

k∈K cky
max
k ] and

j ∈ P . Note that Aϕ
j (Bj) consists of r(j) ≥ 1 line segments, which are defined by breakpoints

b1j := fj < b2j . . . < b
r(j)
j < b

r(j)+1
j := fj +

∑
k∈K cky

max
k and slopes h1

A,j > h2
A,j > . . . > h

r(j)
A,j .

When Bj ∈ [brj , b
(r + 1)j] for some r ∈ 1, . . . , r(j), the approximator Aϕ(B)j can be written

as

Aϕ
j (Bj) = Aj(b

r
j) + (Bj − brj)h

r
A,j, (39)

where constants brj , h
r
A,j, and Aj(b

r
j) can all be computed during the pre-processing stage.

This form, however, cannot be used directly in our formulation for two reasons. First,

we need an indicator variable to identify which subsegment the argument Bj belongs to.

Second, recalling that Aj(Bj) represents the attractiveness of facility j when budget Bj is

allocated to that facility and that the attractiveness should be 0 when Bj = 0, we need

to make sure that our approximator also evaluates to 0 in this case. To that end, we let

ℓrA,j = b(r+1)j − brj be the length of segment r ∈ 1, . . . , r(j) and rewrite (39) as follows:

Aϕ
j (Bj) = Aj(b

r
j)W

r
A,j + ℓrA,jh

r
A,jQ

r
A,j, (40)

where W r
A,j, Q

r
A,j are the new decision variables defined by

W r
A,j =

 1 if Bj ∈ [brj , b
(r+1)
j ]

0 otherwise,
Qr

A,j =

 (Bj − brj)/ℓ
r
A,j if W r

A,j = 1

0 otherwise.
(41)

In words, W r
A,j indicates which segment r ∈ 1, . . . , r(j) the argument Bj belongs to and Qr

A,j

measures the proportion of that segment that is covered. The advantage of (40) is that it

evaluates to 0 when W r
A,j = Qr

A,j = 0. This allows us to replace constraints (26, 27) in
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formulation (GFLDP-A) with the the following constraints:

Bj =

r(j)∑
r=1

[brjW
r
A,j + ℓrA,jQ

r
A,j] j ∈ P (42)

r(j)∑
r=1

W r
A,j ≤ 1, j ∈ P (43)

W r
A,j ≥ Qr

A,j, j ∈ P, r ∈ {1, . . . , r(j)} (44)

Uϕ
ij = gij

r(j)∑
r=1

[Aj(b
r
j)W

r
A,j + ℓrA,jh

r
A,jQ

r
A,j] i ∈ N, j ∈ P (45)

Ui =
∑
j∈P

Uϕ
ij + UC

i i ∈ N (46)

W r
A,j ∈ {0, 1}, Qr

A,j ≥ 0, Uϕ
ij ≥ 0 j ∈ P, r ∈ {1, . . . , r(j)} (47)

Constraint (42) represents the budget Bj allocated to facility j in terms of the new decisions

variables W r
A,j, Q

r
A,j. This, together with the next two constraints enforces the definitions

(41). Indeed, suppose for some j ∈ P the constraint (25) allows Bj to take on a positive

value (i.e., xj = 1 signifying an open facility at j). Then, from (25) and the definitions

of breakpoints above, we must have Bj ∈ [brj , b
r+1
j ] for some r ∈ {1, . . . , r(j)}. Defining

W r
A,j, Q

r
A,j according to (41) clearly results in values that make constraints (42-44) feasible.

To see that these values are unique, note that (43, 44) allow W r
A,j, Q

r
A,j to be non-zero for

at most one value of r and there is clearly only one way to represent Bj > 0 in (42). On

the other hand, if xj = 0 (i.e., no facility is open at j), then Bj = 0 by (25), which forces

W r
A,j = Qr

A,j = 0 for all r = 1, . . . , r(j). Constraint (45) now defines the approximate

value Uϕ
ij of the utility term; its correctness following directly from (26) and (40). Note

that the new decision variables Uϕ
ij replace the variables Uij in the original formulation. The

approximate customer-level utility Ui is now defined by (46).

We have now linearized all constraints of (GFLDP-A). To linearize the objective function

we apply the same process to each term Vi(U) for i ∈ N . First observe that the maximum

utility Ūi = UC
i +

∑
j∈P Aj(b)(1 + dij)

−β when the average aggregator UA
i is used, and

Ūi = UC
i + maxj∈P Aj(b)(1 + dij)

−β when then UM
i aggregator is used. The minimum
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value for Ui is UC
i in both cases. Thus, the relevant range for the argument of Vi(U) is

U ∈ [UC
i , Ūi]. Applying the TLA process with tolerance level ϕ we obtain ρ(i) breakpoints

u1
i := UC

i < u2
i < . . . < u

ρ(i)
i < u

ρ(i)+1
i := Ūi with the corresponding set of non-increasing

slopes hr
V,i, r = 1, . . . , ρ(i). Letting ℓrV,i = u

(r+1)
i −ur

i be the length of segment r and defining

new decision variables W r
V,i, Q

r
V,i by

W r
V,i =

 1 if Ui ∈ [ur
i , u

(r+1)
i ]

0 otherwise,
Qr

V,i =

 (Ui − ur
i )/ℓ

r
V,i if W r

V,i = 1

0 otherwise.
(48)

we can write

Ui =

ρ(i)∑
r=1

[ur
iW

r
V,i + ℓrV,iQ

r
V,i],

V ϕ
i (Ui) = Vi(u

r
i )W

r
V,i + ℓrV,ih

r
V,iQ

r
V,i,

with constants ur
i , h

r
V,i, ℓ

r
V,i, Vi(u

r
i ) computable during the pre-processing stage for each i ∈ N

and r ∈ {1, . . . , ρ(i)}.

We now add constraints

Ui =

ρ(i)∑
r=1

[ur
iW

r
V,i + ℓrV,iQ

r
V,i] i ∈ N (49)

V ϕ
i =

ρ(i)∑
r=1

[Vi(u
r
i )W

r
V,i + ℓrV,ih

r
V,iQ

r
V,i] i ∈ N (50)

ρ(i)∑
r=1

W r
V,i = 1 i ∈ N (51)

W r
V,i ≥ Qr

V,i i ∈ N, r ∈ {1, . . . , ρ(i)} (52)

W r
V,i ∈ {0, 1}, Qr

V,i ≥ 0, i ∈ N, r ∈ {1, . . . , ρ(i)} (53)
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to formulation (GFLDP-A) and replace the objective function (22) with the linear objective

Zϵ =
∑
i∈N

wiV
ϕ
i , (54)

obtaining a linear formulation. To summarize, previous discussion together with Theorem 4

leads to the following lineat IP formulation for (GFLDP-A):

Corollary 1 Consider proportional allocation (GFLDP) with average utility aggregator UA
i

given by (2). For a given error tolerance ϵ ∈ (0, 1) consider the Integer Program (IP) with

objective Zϵ given by (54) and constraints (23),(24),(28),(42-47), (49-53). The optimal

value of this IP has the maximum relative error of ϵ with respect to the optimal value of

(GFLDP-A).

To obtain a similar result for the full capture version of (GFLDP) we only need to replace

constraint (46) with

Ui ≤ Uϕ
ij, i ∈ N (55)

and use the formulation (GFLDP-M), leading to the following result.

Corollary 2 Consider full capture (GFLDP) with maximum utility aggregator UM
i given by

(3). For a given error tolerance ϵ ∈ (0, 1) consider the Integer Program (IP) with objective

Zϵ given by (54) and constraints (23),(24),(28),(30-32), (42-45), (55),(47), and (49-53).

The optimal value of this IP has the maximum relative error of ϵ with respect to the optimal

value of (GFLDP-M).

A few remarks are in order with respect to these results. First, in view of the discrete

nature of the solution space, it is trivial to observe that by setting ϵ small enough we can

guarantee that the solution obtained by our approximating linear IPs in the previous two

results are (exactly) optimal with respect to the corresponding models, though, of course, the
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smaller the ϵ, the more linear segments are required to achieve the desired degree of accuracy

in the TLA approximators for Aj(B) and Vi(U), which increases the dimensionality of the

resulting IPs (since new segments require new decision variableW r
A,j, Q

r
A,j,W

r
V,i, Q

r
V,i). On the

other hand, as previously observed in [1], the number of segments in the TLA approximation

tends to grow slowly with ϵ, making high level of accuracy (or possibly optimal solutions)

achievable. We also note that the error tolerances represent the em worst-case maximum

errors; the errors observed in experiments are typically much smaller. in fact, we find that

ϵ = 5% typically leads to optimal solutions for most instances where the exact optimal

solution is known.

Second, while the same error tolerance ϕ =
√
1 + ϵ − 1 was used to derive TLA ap-

proximators of both Aj(B) and Vi(U), this is not necessary - any values ϕ1, ϕ2 such that

(1 + ϕ1)(1 + ϕ2) = ϵ can be used in Theorem 4. Thus, if it turns out that some non-linear

components are substantially more difficult to approximate than others, the tolerance levels

could be increased for “tougher” components and decreased for “easier” ones.

Example: We illustrate the results above with their application to the classic Uncapacitated

Facility Location Problem (UFLP), which is identical to MAXCAP model of [15] when no

competition is present (i.e., UC
i = 0 for all i ∈ N). Since all functions are linear in this case,

we expect (GDFLP) to recover the standard UFLP formulation. As the following discussion

shows, this is indeed the case.

As discussed in Section 2.2 above, in this case Vi(U) = U, gij = g(dij) = d−1
ij = rij, fj =

1, K = ∅, Aj(B) = 1for B ≥ 1 for all j ∈ P, i ∈ N and that b = m. Moreover, in the simple

version of the model there are no competitors either, implying UC
i = 0 for all i ∈ N .

We start with the (GFLDP-M) formulation. Observe that constraint (25) implies that

Bj = xj and (23, 24) are equivalent. Thus,we can drop variables xj and constraint (24),

replacing them with a simple Bj ∈ {0, 1} condition (i.e., variable Bj becomes an indicator

of whether a facility is located at j ∈ P . Moreover, since UC
i = 0 for all i ∈ N , constraints

(30-32), together with variables Ri, i ∈ N can be dropped as well; they are replaced with a

simple non-negativity condition Ui ≥ 0, i ∈ N .

Next, we observe that since Aj(B) = 1 for B ≥ 1 (for any j), the TLA procedure trivially

returns r(j) = 1, b1j = 1, b2j = m,Aj(b
1
j) = 1, h1

A,j = 0, ℓ1A,j = (m− 1) (i.e., for any ϕ > 0, the
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piece-wise linear approximator Aϕ
j (B) consists of one sub-segment of length m − 1 and has

intercept of 1 and slope of 0). Constraints (42-45), (55),(47) therefore become

Bj = W 1
A,j + (m− 1)Q1

A,j] j ∈ P

W 1
A,j ≤ 1, j ∈ P

W 1
A,j ≥ Q1

A,j, j ∈ P,

Uϕ
ij = rijW

1
A,j i ∈ N, j ∈ P

Ui ≤ Uϕ
ij, i ∈ NW 1

A,j ∈ {0, 1}, Q1
A,j ≥ 0, Uϕ

ij ≥ 0 j ∈ P.

It is clear that variables Q1
A,j play no role in determining Uϕ

ij and can be removed. Moreover,

since (as observed previously) Bj is binary, as is W
1
A,j, and the first constraint above implies

Bj = W 1
A,j. Therefore variables W

1
A,j can be removed as well and all of the above constraints

are replaced with

Uϕ
ij = rijBj, i ∈ N, j ∈ P

Ui ≤ Uϕ
ij, i ∈ N,Uϕ

ij ≥ 0, Ui ≥ 0 i ∈ N, j ∈ P.

Finally, we examine the constraints (49-53) and the objective (54). Since the demand func-

tion Vi(U) = U is already linear and U ∈ [0, Ū ], where the upper bound Ū can be defined

as some sufficiently large number (e.g., Ū = maxi,j rij, we observe that for any ϕ > 0 and

i ∈ N we have ρ(i) = 1, u1
i = 0, u2

i = Ū , h1
V,i = 1, V (u1

i ) = 0, ℓ1V,I = Ū . Thus we obtain new

constraints

Ui = 0 ·W 1
V,i + ŪQ1

V,i i ∈ N

W 1
V,i = 1, i ∈ N

W 1
V,i ≥ Q1

V,i, i ∈ N,

V ϕ
i = 0 ·W 1

V,i + 1 · ŪQ1
V,i i ∈ N

W 1
V,i ∈ {0, 1}, Q1

V,i ≥ 0, V ϕ
i ≥ 0 i ∈ N,
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which simplify to V ϕ
i = Ui, i ∈ N, with variables W 1

V,i, Q
1
V,i dropping out entirely. The lin-

earized objective now takes the form Zϵ =
∑

i∈N wiV
ϕ
i =

∑
i∈N wiUi. Putting it all together

we obtain

max
∑
i∈N

wiUi,

Subject to∑
j∈P

Bj ≤ m

Ui ≤ Bjrij i ∈ N, j ∈ P

Bj ∈ {0, 1}, Ui ≥ 0, i ∈ N, j ∈ P,

which is equivalent to the standard UFLP formulation. Of course, our approach allows us

to easily generalize this model by adding in non-identical facility costs, design decisions, and

non-linear demand.

5 Computational Experiments

In this section we conduct a set of computational experiments to solve the (GFLDP) via

the techniques developed in the previous sections. For our experiments e used a subset of

networks from the well-known set of p-median test problems by Beasley [3] with number of

nodes N ranging from 100 to 900; these instances provided the network structure, as well as

node weights. We also used the following functional forms:

• Demand function V (U) = 1 − exp(−λU). Note that λ > 0 can be interpreted as

(in)elasticity of demand - for higher values of λ the demand is less elastic

• Distance function g(d) = (1 + d)−β. Here β > 0 represents customer sensitivity to

distance (higher values correspond to higher sensitivity)

• Utility aggregator UA
i =

∑
j∈P Uij
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Since a common (and practical) approach to location and design problems is to solve them

separately, i.e., first determine the locations and number of facilities and then determine the

design for each location, we wanted to see to what extend this approach underperforms

the solutions of GFDLP model that jointly optimizes locations and design. To that end we

developed the following heuristic “HS” that, for a given number of facilities first finds “good”

locations via the m−median model, and then the optimal design for each of these locations

using the single facility design problem (SFDP):

Heuristic HS

Step 0 Let cmin = minj∈P fj and cmax = maxj∈P (fj +
∑

k∈K cky
max
k ) be the minimum and

maximum facility costs, respectively. Then mmin = ⌊b/cmax⌋, mmax = ⌊b/cmin⌋ are the

minimum and maximum number of facilities that can be located for a given budget b.

Step 1 For m between mmin and mmax do

Step 1.1 Solve m − median model to find locations for m “basic” (i.e., all design

improvement characteristics set to 0) facilities.

Step 1.2 Allocate budget fj to each facility j. In case b is not sufficient to open minimal

facilities at all m locations, open facilities in order of increasing m−median objec-

tive values. Any leftover budget is allocated to facilities in inverse proportionality

to the m−median values. Solve (SFDP) model for each location with non-zeor

additional budget to determine the optimal facility design for that location.

Step 1.3 Compute the (GFLDP) objective corresponding to this solution and incre-

ment m.

Step 2 Output the solution with the highest objective value.

Results of computational experiments for single and multiple facility facility problems

are presented in the next two sections.
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5.1 Solving Single-Facility Problem - Computational Experiments

Computational results for SFDP presented below are based on Algorithms 1 and Algorithm 2

of Section 3. Since both GFLDP and the (HS) heuristic are limited to 1 facility, the difference

in solutions is due to the fact that the former first computes optimal design for each node

and then selects the best node-design combination, while the latter selects 1−median as the

facility location and then optimizes the design for this location. No pre-existing competitive

facilities were assumed and the following parameter values were used:

• The number of design characteristics |K| was set to 3, 10, 100. For each k ∈ K, the

sensitivity parameter θk in the attractiveness formula (5) was randomly selected from

Uniform[0, 1]. We fixed αj = 1, j ∈ N and ymax
k = 1, k ∈ K.

• The costs ck, k ∈ K were randomly drawn from Uniform[1, 10] for each k. The budget

was set to b = 7.5|K|, and the fixed costs were set to fj = (M∗/Mj)2.5|K| where M∗

and Mj are the values of the optimal 1−median solution and the 1−median solution

at j ∈ N , respectively. This ensured that there was some budget for facility design at

each location, but that more attractive locations (with better 1−median values) had

higher fixed costs.

• The distance sensitivities β were set to 1.5, 2, 2.5 and demand sensitivities λ to .5, 1, 1.5.

Altogether, 271 instances were generated. The basic results can be found on Table 5.1.

Columns 3-5 contain the average run time (sec), the average number of breakpoints of the

A(B) function in Algorithm 2, and the ratio of objective values of (HS) and (SFDP) solutions.

First, observe that SFDP solution is extremely fast (for 100-node networks, the runtimes

were essentially instantaneous). Second, the number of breakpoints of the A(B) function

appears to scale approximately linearly with the number of design characteristics. Finally,

the average gap (HS) and (SFDP) solutions is about 12%. Further examination of results

shows that this gap is strongly affected by two parameters: distance sensitivity β and demand

in-elasticity λ; when β is high and λ is low the gaps are quite high larger - this is displayed
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Table 5.1: Computational results for SFDP model. Last column corresponds to values
β = 2.5, λ = .5

in the last column of Table 5.1. This observation makes sense: when customers are not

either sensitive to travel distance, or the demand is not elastic, the location of the facility

will not have a strong effect on the intercepted demand, and the difference between HS and

SFDP solutions will be small. However, when both, strong distance sensitivity and demand

elasticity are present, separating location and design decisions may result in optimality gaps

of over 50%.

5.2 Solving Multi-facility (GDFLP) - Computational Experiments

The basic setup of for the multi-facility experiments was similar to the one used in the

previous section, with the following changes:

• P-median Beasley set instances 1 and 4 (n = 100) and 7 and 10 (n=200) were used.=

• The maximum number of facilities m was set to 5, 7, 10 for n = 100 and 10, 15, 20 for

n = 200. The set of potential locations was the node set N

• The number of competitive facilities |NC | was set to 0, 1, 3, 5. For the case with non-

zero competitive facilities, the competitor was treated as a leader, i.e., we first solved
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GFDLP (assuming no competition and same set-up with respect to design character-

istics, costs, and budgetary constraints as for own facilities) to find optimal locations

and design for competitive facilities, then fixed these facilities and located up to m

own facilities.

• The number of design characteristics was set to |K| = 3 with θ1 = .25, θ2 = .5, θ3 = .75

and ymax
k = 1 for k = 1, 2, 3. This allows us to track the degree of “improvement” of

each located facility. The base attractiveness level was set to αj = 1 for all j.

• The design improvement costs were set as follows: ck = Γf̄2(θk−1), where f̄ = (1/n)
∑

j∈N fj

is the average fixed cost and Γ is the “design cost parameter” with values {0.1, ..., 0.5}.

This cost structure was selected to ensure that (a) the characteristics with higher θk

values (i.e., having more impact on attractiveness) are also more expensive to improve,

and (b) design costs are scaled relative to to fixed costs. The parameter Γ allows us

to make overall cost of design improvements more or less expensive relative to fixed

location costs.

• Budget b was calibrated to be approximately equal to the cost of opening m “basic”

facilities (i.e., facilities with all design improvement variables Yk set to 0). This gave

the model options to either locate up tom basic facilities, or a lesser number of facilities

with improved design.

• All GFLDP instances were solved using the iterated TLA approach described in Section

4 with maximum error tolerance set to ϵ = 5%. All MIPs were solved using CPLEX

solver with the time limit set to one hour. If convergence was not achieved within this

time, the best found solution was reported.

• HS heuristic solution was also obtained for every problem instance.

Altogether, 4320 problem instances were solved. We report a summary of key results

below; full results are available from authors upon request. Most observations reported

below were confirmed with statistical analysis of results.

We start by analyzing runtimes (in seconds) for both GFLDP and HS solutions on Tables

5.2(a)-(d). First, we observe that the methodology developed above for GFLDP leads to
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Table 5.2: Analysis of runtimes (in sec) for GFLDP and HS.

runtimes that are, on average, significantly smaller than for the HS heuristic: while the

difference is minor for n = 100 case, it increases to nearly four times for n = 200 networks.

This effect was also verified on larger networks (results available on request). Table 5.2(a)

shows that runtimes increase with the network size n and maximum number of facilities m

for both GFLDP and HS. However, the second parameter has much stronger impact on HS

runtimes vs. GFLDP. Table 5.2(b) shows that runtimes tend to decrease as the number

of competitive facilities grows (again, the effect is stronger for HS). Table 5.2(c) illustrates

one of the strongest factors affecting runtimes of GFLPD: the design cost parameter Γ (this

effect was confirmed with statistical analysis). This is because higher values of Γ limit facility

design options under the available budget, thus making the problem easier. On the other

hand, this parameter has no impact on HS runtimes. As a result, instances with the lowest

value of Γ were the only ones where average runtimes for HS were smaller than for GFLDP.

Table 5.2(d) provides results for cases that could not be solved to optimality within the

time limit - labeled as “Current” in the “GFLDP Status” column; there were 11 out of 2160

such instances for n = 100 case, and 164 out of 2160 instances for n = 200 case. It can

be seen that all of these cases had low values of Γ; for n = 200 nearly 20% of instances

with Γ = 0.1, 0.2 could not be solved to optimality - further confirming that relative cost

of facility design is the key determinant of the computational difficulty of GDFLP instance.

We also conclude that problems with up to 200 nodes and potential facility locations and

up to 20 facilities can typically be solved quite quickly using the iterated TLA approach for

the TLA.
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Table 5.3: Analysis of HS Gap - the relative difference between best-found HS and GFLDP
solutions.

We next turn our attention to solution quality, focusing on the relative difference between

the best solutions obtained by GFLDP and HS for each problem instance; we call this

difference the “HS Gap”; the results are displayed on Table 5.3. The average HS Gap is

about 15% - pointing to significant advantages of jointly optimizing design and location

decisions (in GFLDP) vs making this decisions separately (in HS). According to statistical

analysis, the main predictor of HS Gap is the design cost parameter Γ (the other important

predictors are the maximum number of facilities m and distance sensitivity β). The effect

of Γ can be seen on Table 5.3 - the HS Gap approaches 30% for lower values of Γ, i.e., when

the available budget allows for more variation in facility design. It is interesting to note

that some of the largest HS Gaps were observed for cases that were not solved to optimality

within the time limit - indicating that even when GFLDP solution process is interrupted

due to time constraints, the best-found solution is better than the HS alternative.

Finally, Tables 5.4(a),(b) explore the reasons behind the difference between GFLDP

solutions. Two measures are displayed: the number of facilities opened by each algorithm and

the average percentage of the available budget that was spend on facility locations (measured

as the ratio of the sum of fixed location costs for all open facilities to the available budget);
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Table 5.4: Analysis of the number of facilities in the optimal solution of GFLDP and HS
algorithms.

note that the remaining portion of budget must have been spent on design improvements.

Here the differences between GFLDP and HS solutions are quire dramatic: Table 5.4(a)

shows that GFLDP locates about 50% fewer facilities than HS (note that m is an upper

bound on the number of facilities for GFLDP but not for HS). The last two columns of

the table show that while GFLDP splits the available budget almost evenly between fixed

location and design improvement costs, HS tends to spend nearly all available budget on the

former, and only 6% on the latter. Table 5.4(b) shows that deisgn cost parameter Γ is the

key determinant of the percentage of budget spent on location vs improvement by GFLDP,

while it has almost no impact on HS solution - thus even when opportunities for cost efficient

design improvements exist, HS algorithm cannot take advantage of them. To summarize,

joint optimization of location and design leads to a smaller number of “improved” facilities,

while separate optimization leads to a large number of “basic” facilities.

6 Concluding Remarks and Directions for Future Re-

search

In this paper we have developed a general GFLPDP model that allows us to represent a rich

variety of location and design models, including models with elastic demand, pre-existing

competitive facilities, all-or-nothing or proportional customer allocation mechanisms, and a
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different types of design dimensions. Many previously described location models, including

such classical models as UFLP, MaxCap, Competitive Interaction - appear as special cases

within our framework.

We also develop an efficient solution methodology for GFDLP which allows us to solve

medium-size problems (with several hundred potential facility locations and up to 20 new

facilities to be located) within reasonable times.

One of the key advantages of GDFLP is that it allows how joint optimization of location

and design decisions - answering the question of “what kind of facilities to locate” in addi-

tion to “where” and “how many” that are traditionally addressed by location models. Our

computational results show that this joint optimization may be quite important in prac-

tice - separating design and location decisions, even in a reasonably sophisticated way as

represented by our HS heuristic, leads to significant optimality gaps.

We close with comments on several extensions of the model. Perhaps the most obvious

is changing the objective to profit (net revenue) optimization instead of maximizing revenue

for a given budget (which is assumed in the current version). In principle, making budget b

a decision variable which is subtracted from the current objective leads to no technical diffi-

culties at all - all of the methodological developments above extend to this profit-optimizing

version. The major exception is the relative error guarantee in Theorem 4. The reason

is quite clear: the iterated TLA approach bounds the relative error of the revenue term;

however if the profit margins are slim, the optimal profit may be a quite small relative to

revenue, and thus the relative error for the piece-wise linear approximation may be quite

large. It would be nice to develop an approach that extends the guarantees on the overall

relative error to the profit-maximizing version of GFLDP.

Another obvious (and difficult) extension is to allow for more dynamic competition. As is

the case for much of discrete-network competitive location models, GFLDP essentially solved

the follower’s problem in a leader-follower game. The leader’s problem is more difficult, but

of obvious importance.

Finally, the extensions to more general cost structure and attractiveness function struc-

ture for the design problem should be considered.
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